更改

删除7,167字节 、 2022年12月28日 (三) 20:32
无编辑摘要
第20行: 第20行:  
{{Main|Mutualism (biology)}}
 
{{Main|Mutualism (biology)}}
   −
Coevolution is the [[evolution]] of two or more [[species]] which reciprocally affect each other, sometimes creating a [[Mutualism (biology)|mutualistic relationship]] between the species. Such relationships can be of many different types.
+
共同演化是两个或两个以上[[species|物种]]相互影响,有时在物种之间创造一种[[Mutualism (biology)|互惠关系]]的[[evolution|演化]]。这样的关系可以有许多不同的类型。<ref>{{cite book |title=Coevolution |author=[[Douglas J. Futuyma|Futuyma, D. J.]] and M. Slatkin (editors) |year=1983 |publisher=[[Sinauer Associates]] |isbn=978-0-87893-228-3 |pages=whole book}}</ref><ref>{{cite book |title=The Coevolutionary Process |author=Thompson, J. N.|year=1994 |publisher=University of Chicago Press |isbn=978-0-226-79759-5 |pages=whole book}}</ref>
 
  −
共同演化是两个或两个以上物种相互影响,有时在物种之间创造一种互惠关系的演化。这样的关系可以有许多不同的类型。<ref>{{cite book |title=Coevolution |author=[[Douglas J. Futuyma|Futuyma, D. J.]] and M. Slatkin (editors) |year=1983 |publisher=[[Sinauer Associates]] |isbn=978-0-87893-228-3 |pages=whole book}}</ref><ref>{{cite book |title=The Coevolutionary Process |author=Thompson, J. N.|year=1994 |publisher=University of Chicago Press |isbn=978-0-226-79759-5 |pages=whole book}}</ref>
      
===被子植物===
 
===被子植物===
Flowers appeared and diversified relatively suddenly in the fossil record, creating what [[Charles Darwin]] described as the "abominable mystery" of how they had evolved so quickly; he considered whether coevolution could be the explanation. He first mentioned coevolution as a possibility in ''[[On the Origin of Species]]'', and developed the concept further in ''[[Fertilisation of Orchids]]'' (1862).
+
花朵在化石记录中比较突发地出现和多样化,创造了被[[Charles Darwin|查尔斯 · 达尔文]]描述为如此迅速进化的“令人憎恶的神秘”; 他考虑是否可以以共同演化作为解释。<ref>{{cite journal |author=Friedman, W. E. |date=January 2009 |title=The meaning of Darwin's 'abominable mystery' |journal=Am. J. Bot. |volume=96 |issue=1 |pages=5–21 |doi=10.3732/ajb.0800150 |url=http://www.amjbot.org/content/96/1/5.full |pmid=21628174}}</ref>他可能在''[[On the Origin of Species|物种起源]]''中首次提到了共同演化,并在''[[Fertilisation of Orchids|兰花的传粉]]''(1862)中进一步发展了这个概念。<ref name="CardinalDanforth2013" /><ref name="t24">{{cite book |first=John N. |last=Thompson |title=The coevolutionary process |publisher=[[University of Chicago Press]] |location=Chicago |year=1994 |isbn=978-0-226-79760-1 |url=https://books.google.com/books?id=AyXPQzEwqPIC&q=Wallace+%22creation+by+law%22+Angr%C3%A6cum&pg=PA27 |access-date=2009-07-27}}</ref><ref name="origins94">{{cite book |last=Darwin |first=Charles |year=1859 |title=On the Origin of Species |edition=1st |location=London |publisher=John Murray |url=http://darwin-online.org.uk/content/frameset?itemID=F373&viewtype=text&pageseq=1 |access-date=2009-02-07}}</ref><ref name="orchids1">{{cite book |last=Darwin |first=Charles |year=1877 |title=On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing |location=London |publisher=John Murray |edition=2nd |url=http://darwin-online.org.uk/content/frameset?itemID=F801&viewtype=text&pageseq=1 |access-date=2009-07-27}}</ref>
 
  −
花朵在化石记录中比较突发地出现和多样化,创造了被查尔斯 · 达尔文描述为如此迅速进化的“令人憎恶的神秘”; 他考虑是否可以以共同演化作为解释。<ref>{{cite journal |author=Friedman, W. E. |date=January 2009 |title=The meaning of Darwin's 'abominable mystery' |journal=Am. J. Bot. |volume=96 |issue=1 |pages=5–21 |doi=10.3732/ajb.0800150 |url=http://www.amjbot.org/content/96/1/5.full |pmid=21628174}}</ref>他可能在''物种起源''中首次提到了共同演化,并在''兰花的传粉''(1862)中进一步发展了这个概念。<ref name="CardinalDanforth2013" /><ref name="t24">{{cite book |first=John N. |last=Thompson |title=The coevolutionary process |publisher=[[University of Chicago Press]] |location=Chicago |year=1994 |isbn=978-0-226-79760-1 |url=https://books.google.com/books?id=AyXPQzEwqPIC&q=Wallace+%22creation+by+law%22+Angr%C3%A6cum&pg=PA27 |access-date=2009-07-27}}</ref><ref name="origins94">{{cite book |last=Darwin |first=Charles |year=1859 |title=On the Origin of Species |edition=1st |location=London |publisher=John Murray |url=http://darwin-online.org.uk/content/frameset?itemID=F373&viewtype=text&pageseq=1 |access-date=2009-02-07}}</ref><ref name="orchids1">{{cite book |last=Darwin |first=Charles |year=1877 |title=On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing |location=London |publisher=John Murray |edition=2nd |url=http://darwin-online.org.uk/content/frameset?itemID=F801&viewtype=text&pageseq=1 |access-date=2009-07-27}}</ref>
      
====昆虫和昆虫传粉的花朵====
 
====昆虫和昆虫传粉的花朵====
第33行: 第29行:  
[[File:Apis mellifera - Melilotus albus - Keila.jpg|thumb|upright|蜜蜂在白草木犀属花朵的花粉筐中采集花粉并获得奖励花蜜|链接=Special:FilePath/Apis_mellifera_-_Melilotus_albus_-_Keila.jpg]]
 
[[File:Apis mellifera - Melilotus albus - Keila.jpg|thumb|upright|蜜蜂在白草木犀属花朵的花粉筐中采集花粉并获得奖励花蜜|链接=Special:FilePath/Apis_mellifera_-_Melilotus_albus_-_Keila.jpg]]
   −
Modern [[entomophily|insect-pollinated (entomophilous) flowers]] are conspicuously coadapted with insects to ensure pollination and in return to reward the [[pollinator]]s with nectar and pollen. The two groups have coevolved for over 100 million years, creating a complex network of interactions. Either they evolved together, or at some later stages they came together, likely with pre-adaptations, and became mutually adapted.
+
现代[[entomophily|昆虫传粉(虫媒)的花朵]]明显与昆虫相互适应以确保授粉,并以花蜜和花粉回馈[[pollinator|授粉者]]。这两组群体已经共同演化了超过1亿年,创造了一个复杂的互动网络。它们要么一同演化,要么在后期的某些阶段一同演化——并很可能伴随着预适应,在之后达到了如此充分的相互适应性。<ref name="Lunau">{{cite journal |last1=Lunau |first1=Klaus |title=Adaptive radiation and coevolution — pollination biology case studies |journal=Organisms Diversity & Evolution |date=2004 |volume=4 |issue=3 |pages=207–224 |doi=10.1016/j.ode.2004.02.002 }}</ref><ref>{{cite book |author=Pollan, Michael |title=The Botany of Desire: A Plant's-eye View of the World |publisher=Bloomsbury |isbn=978-0-7475-6300-6 |title-link=The Botany of Desire |year=2003}}</ref>
 
  −
现代昆虫传粉的花朵明显与昆虫相互适应以确保授粉,并以花蜜和花粉回馈授粉者。这两组群体已经共同演化了超过1亿年,创造了一个复杂的互动网络。它们要么一同演化,要么在后期的某些阶段一同演化——并很可能伴随着预适应,在之后达到了如此充分的相互适应性。<ref name="Lunau">{{cite journal |last1=Lunau |first1=Klaus |title=Adaptive radiation and coevolution — pollination biology case studies |journal=Organisms Diversity & Evolution |date=2004 |volume=4 |issue=3 |pages=207–224 |doi=10.1016/j.ode.2004.02.002 }}</ref><ref>{{cite book |author=Pollan, Michael |title=The Botany of Desire: A Plant's-eye View of the World |publisher=Bloomsbury |isbn=978-0-7475-6300-6 |title-link=The Botany of Desire |year=2003}}</ref>
  −
 
  −
Several highly successful [[insect]] groups—especially the [[Hymenoptera]] (wasps, bees and ants) and [[Lepidoptera]] (butterflies and moths) as well as many types of [[Diptera]] (flies) and [[Coleoptera]] (beetles)—evolved in conjunction with [[flowering plant]]s during the [[Cretaceous]] (145 to 66 million years ago). The earliest bees, important pollinators today, appeared in the early Cretaceous. A group of wasps [[sister clade|sister]] to the bees evolved at the same time as flowering plants, as did the Lepidoptera. Further, all the major [[clade]]s of bees first appeared between the middle and late Cretaceous, simultaneously with the adaptive radiation of the [[eudicots]] (three quarters of all angiosperms), and at the time when the angiosperms became the world's dominant plants on land.
  −
 
  −
一些非常成功的昆虫群体——尤其是膜翅目(黄蜂、蜜蜂和蚂蚁)和鳞翅目(蝴蝶和飞蛾)以及许多种双翅目(苍蝇)和鞘翅目(甲虫)——在白垩纪(1.45亿至6.6亿年前)与被子植物共同演化。最早的蜜蜂,今天重要的传粉者,出现在白垩纪早期。<ref name="Bristol">{{cite web |title=Coevolution of angiosperms and insects |url=http://palaeo.gly.bris.ac.uk/Palaeofiles/Angiosperms/coevolution.htm |publisher=University of Bristol Palaeobiology Research Group |access-date=16 January 2017 |archive-url=https://web.archive.org/web/20161220033247/http://palaeo.gly.bris.ac.uk/Palaeofiles/Angiosperms/coevolution.htm |archive-date=20 December 2016 |url-status=dead }}</ref>一群与蜜蜂相近亲的黄蜂与被子植物同时演化,鳞翅目也是如此。<ref name="Bristol" />此外,所有主要的蜜蜂分支种系均首次出现在白垩纪中到晚期间,同时出现的是真根植物的辐射适应(占所有被子植物的四分之三) ,正当被子植物成为世界上陆地的主要植物时。<ref name="CardinalDanforth2013">{{cite journal |last1=Cardinal |first1=Sophie |last2=Danforth |first2=Bryan N. |title=Bees diversified in the age of eudicots |journal=Proceedings of the Royal Society B |date=2013 |doi=10.1098/rspb.2012.2686 |volume=280 |issue=1755 |pages=20122686 |pmid=23363629 |pmc=3574388}}</ref>
  −
 
  −
At least three aspects of flowers appear to have coevolved between flowering plants and insects, because they involve communication between these organisms. Firstly, flowers communicate with their pollinators by scent; insects use this scent to determine how far away a flower is, to approach it, and to identify where to land and finally to feed. Secondly, flowers attract insects with patterns of stripes leading to the rewards of nectar and pollen, and colours such as blue and ultraviolet, to which their eyes are sensitive; in contrast, bird-pollinated flowers tend to be red or orange. Thirdly, flowers such as [[Ophrys|some orchids]] mimic females of particular insects, deceiving males into [[pseudocopulation]].
     −
被子植物的花至少在三个方面呈现出和昆虫的共同演化,因为它们涉及到了这些有机体之间的交流。首先,花朵通过气味与它们的传粉者交流;昆虫通过这种气味来确定与一朵花的距离和靠近它,并决定在哪落足以及到最后在哪觅食。其次,吸引昆虫的花纹和图案导向花蜜和花粉的奖励;而蓝色和紫外线等色调则面向视觉灵敏的诱导授粉的目标;与此相对的是,通过鸟类传粉的花朵会更倾向于是红色或橙色的。再次,像某些兰花这样的花朵会模仿某些昆虫的雌性,欺骗雄性进入拟交配。<ref name="Bristol" /><ref name="Pijl">{{cite book |first1=Leendert |last1=van der Pijl |first2=Calaway H. |last2=Dodson |title=Orchid Flowers: Their Pollination and Evolution |chapter-url=https://archive.org/details/orchidflowersthe0000pijl |chapter-url-access=registration |chapter=Chapter 11: Mimicry and Deception |publisher=[[University of Miami]] Press |location=Coral Gables |year=1966 |pages=[https://archive.org/details/orchidflowersthe0000pijl/page/129 129–141] |isbn=978-0-87024-069-0}}</ref>
+
一些非常成功的[[insect|昆虫]]群体——尤其是[[Hymenoptera|膜翅目]](黄蜂、蜜蜂和蚂蚁)和[[Lepidoptera|鳞翅目]](蝴蝶和飞蛾)以及许多种[[Diptera|双翅目]](苍蝇)和[[Coleoptera|鞘翅目]](甲虫)——在[[Cretaceous|白垩纪]](1.45亿至6.6亿年前)与[[flowering plant|被子植物]]共同演化。最早的蜜蜂,今天重要的传粉者,出现在白垩纪早期。<ref name="Bristol">{{cite web |title=Coevolution of angiosperms and insects |url=http://palaeo.gly.bris.ac.uk/Palaeofiles/Angiosperms/coevolution.htm |publisher=University of Bristol Palaeobiology Research Group |access-date=16 January 2017 |archive-url=https://web.archive.org/web/20161220033247/http://palaeo.gly.bris.ac.uk/Palaeofiles/Angiosperms/coevolution.htm |archive-date=20 December 2016 |url-status=dead }}</ref>一群与蜜蜂相[[sister clade|近亲]]的黄蜂与被子植物同时演化,鳞翅目也是如此。<ref name="Bristol" />此外,所有主要的蜜蜂[[clade|分支种系]]均首次出现在白垩纪中到晚期间,同时出现的是[[eudicots|真双子叶植物]]的辐射适应(占所有被子植物的四分之三) ,正当被子植物成为世界上陆地的主要植物时。<ref name="CardinalDanforth2013">{{cite journal |last1=Cardinal |first1=Sophie |last2=Danforth |first2=Bryan N. |title=Bees diversified in the age of eudicots |journal=Proceedings of the Royal Society B |date=2013 |doi=10.1098/rspb.2012.2686 |volume=280 |issue=1755 |pages=20122686 |pmid=23363629 |pmc=3574388}}</ref>
   −
The [[yucca]], ''Yucca whipplei'', is pollinated exclusively by ''Tegeticula maculata'', a [[yucca moth]] that depends on the yucca for survival. The moth eats the seeds of the plant, while gathering pollen. The pollen has evolved to become very sticky, and remains on the mouth parts when the moth moves to the next flower. The yucca provides a place for the moth to lay its eggs, deep within the flower away from potential predators.
+
被子植物的花至少在三个方面呈现出和昆虫的共同演化,因为它们涉及到了这些有机体之间的交流。首先,花朵通过气味与它们的传粉者交流;昆虫通过这种气味来确定与一朵花的距离和靠近它,并决定在哪落足以及到最后在哪觅食。其次,吸引昆虫的花纹和图案导向花蜜和花粉的奖励;而蓝色和紫外线等色调则面向视觉灵敏的诱导授粉的目标;与此相对的是,通过鸟类传粉的花朵会更倾向于是红色或橙色的。再次,像[[Ophrys|某些兰花]]这样的花朵会模仿某些昆虫的雌性,欺骗雄性进入[[pseudocopulation|拟交配]]。<ref name="Bristol" /><ref name="Pijl">{{cite book |first1=Leendert |last1=van der Pijl |first2=Calaway H. |last2=Dodson |title=Orchid Flowers: Their Pollination and Evolution |chapter-url=https://archive.org/details/orchidflowersthe0000pijl |chapter-url-access=registration |chapter=Chapter 11: Mimicry and Deception |publisher=[[University of Miami]] Press |location=Coral Gables |year=1966 |pages=[https://archive.org/details/orchidflowersthe0000pijl/page/129 129–141] |isbn=978-0-87024-069-0}}</ref>
   −
对丝兰(''Yucca whipplei'')这种植物只有斑点豆斑蛾才能够为其授粉,而斑点豆斑蛾是一种依靠丝兰生存的丝兰蛾。<ref>{{cite journal |title=Pollination Partnerships Fact Sheet |journal=Flora of North America |year=2004 |first=Claire |last=Hemingway |pages=1–2 |url=http://www.fna.org/files/imported/Outreach/FNAfs_yucca.pdf |access-date=2011-02-18 |quote=Yucca and Yucca Moth}}</ref><ref>{{cite journal |doi=10.1073/pnas.96.16.9178 |title=Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association |journal=Proc. Natl. Acad. Sci. USA |date=August 1999 |first=Olle |last=Pellmyr |pmid=10430916 |author2=James Leebens-Mack |volume=96 |issue=16 |pmc=17753 |pages=9178–9183 |bibcode=1999PNAS...96.9178P|doi-access=free }}</ref>花粉会随附在蛾进食植物的种子的过程之中被采集。花粉已经进化得非常粘着,当飞蛾移动到下一朵花时仍然会留在其口腔的部分。丝兰则在花的深处为蛾提供了一个产卵的地方,来远离潜在的捕食者。
+
对[[yucca|丝兰]](''Yucca whipplei'')这种植物只有斑点豆斑蛾才能够为其授粉,而斑点豆斑蛾是一种依靠丝兰生存的[[yucca moth|丝兰蛾]]。<ref>{{cite journal |title=Pollination Partnerships Fact Sheet |journal=Flora of North America |year=2004 |first=Claire |last=Hemingway |pages=1–2 |url=http://www.fna.org/files/imported/Outreach/FNAfs_yucca.pdf |access-date=2011-02-18 |quote=Yucca and Yucca Moth}}</ref><ref>{{cite journal |doi=10.1073/pnas.96.16.9178 |title=Forty million years of mutualism: Evidence for Eocene origin of the yucca-yucca moth association |journal=Proc. Natl. Acad. Sci. USA |date=August 1999 |first=Olle |last=Pellmyr |pmid=10430916 |author2=James Leebens-Mack |volume=96 |issue=16 |pmc=17753 |pages=9178–9183 |bibcode=1999PNAS...96.9178P|doi-access=free }}</ref>花粉会随附在蛾进食植物的种子的过程之中被采集。花粉已经进化得非常粘着,当飞蛾移动到下一朵花时仍然会留在其口腔的部分。丝兰则在花的深处为蛾提供了一个产卵的地方,来远离潜在的捕食者。
    
====鸟类和鸟类传粉的花朵====
 
====鸟类和鸟类传粉的花朵====
第53行: 第41行:  
[[File:Purple-throated carib hummingbird feeding.jpg|thumb|left|紫喉蜂鸟在从一朵花中摄食并授粉|链接=Special:FilePath/Purple-throated_carib_hummingbird_feeding.jpg]]
 
[[File:Purple-throated carib hummingbird feeding.jpg|thumb|left|紫喉蜂鸟在从一朵花中摄食并授粉|链接=Special:FilePath/Purple-throated_carib_hummingbird_feeding.jpg]]
   −
[[Hummingbird]]s and ornithophilous (bird-pollinated) flowers have evolved a [[mutualism (biology)|mutualistic]] relationship. The flowers have [[nectar]] suited to the birds' diet, their color suits the birds' vision and their shape fits that of the birds' bills. The blooming times of the flowers have also been found to coincide with hummingbirds' breeding seasons. The floral characteristics of ornithophilous plants vary greatly among each other compared to closely related insect-pollinated species. These flowers also tend to be more ornate, complex, and showy than their insect pollinated counterparts. It is generally agreed that plants formed coevolutionary relationships with insects first, and ornithophilous species diverged at a later time. There is not much scientific support for instances of the reverse of this divergence: from ornithophily to insect pollination. The diversity in floral phenotype in ornithophilous species, and the relative consistency observed in bee-pollinated species can be attributed to the direction of the shift in pollinator preference.
+
[[Hummingbird|蜂鸟]]和喜鸟类(通过鸟类传粉)的花演化出了一种[[mutualism (biology)|互惠]]的关系。这些花的[[nectar|花蜜]]合于鸟类的饮食,它们的颜色亦合于鸟类的视觉,它们的形状则合于鸟的喙。这些花的开放时间还被发现与蜂鸟的繁殖季节相吻合。同与被昆虫传粉密切相关的植物相比,喜鸟类植物的花部特征差异很大。这些花也会较昆虫授粉的同类更华丽、复杂和艳丽。被普遍认为的是,植物首先与昆虫形成共同演化关系,喜鸟类植物在后期分化。从鸟类学到昆虫授粉,并没有多少科学依据支持此分歧中相反的例子。喜鸟类植物花器官表型的多样性和蜜蜂传粉物种花器官表型的相对一致性可以归因于传粉者偏好的转变方向。<ref>{{cite journal |last1=Kay |first1=Kathleen M.|last2=Reeves |first2=Patrick A. |last3=Olmstead |first3=Richard G. |last4=Schemske|first4=Douglas W. |s2cid=2991957|title=Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences |journal=American Journal of Botany |date=2005 |volume=92 |issue=11|pages=1899–1910 |doi=10.3732/ajb.92.11.1899 |pmid=21646107|doi-access=free }}</ref>
 
  −
蜂鸟和喜鸟类(通过鸟类传粉)的花演化出了一种互惠的关系。这些花的花蜜合于鸟类的饮食,它们的颜色亦合于鸟类的视觉,它们的形状则合于鸟的喙。这些花的开放时间还被发现与蜂鸟的繁殖季节相吻合。同与被昆虫传粉密切相关的植物相比,喜鸟类植物的花部特征差异很大。这些花也会较昆虫授粉的同类更华丽、复杂和艳丽。被普遍认为的是,植物首先与昆虫形成共同演化关系,喜鸟类植物在后期分化。从鸟类学到昆虫授粉,并没有多少科学依据支持此分歧中相反的例子。喜鸟类植物花器官表型的多样性和蜜蜂传粉物种花器官表型的相对一致性可以归因于传粉者偏好的转变方向。<ref>{{cite journal |last1=Kay |first1=Kathleen M.|last2=Reeves |first2=Patrick A. |last3=Olmstead |first3=Richard G. |last4=Schemske|first4=Douglas W. |s2cid=2991957|title=Rapid speciation and the evolution of hummingbird pollination in neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences |journal=American Journal of Botany |date=2005 |volume=92 |issue=11|pages=1899–1910 |doi=10.3732/ajb.92.11.1899 |pmid=21646107|doi-access=free }}</ref>
  −
 
  −
Flowers have converged to take advantage of similar birds. Flowers compete for pollinators, and adaptations reduce unfavourable effects of this competition. The fact that birds can fly during inclement weather makes them more efficient pollinators where bees and other insects would be inactive. Ornithophily may have arisen for this reason in isolated environments with poor insect colonization or areas with plants which flower in the winter. Bird-pollinated flowers usually have higher volumes of nectar and higher sugar production than those pollinated by insects.
  −
This meets the birds' high energy requirements, the most important determinants of flower choice. In ''[[Mimulus]]'', an increase in red pigment in petals and flower nectar volume noticeably reduces the proportion of pollination by bees as opposed to hummingbirds; while greater flower surface area increases bee pollination. Therefore, red pigments in the flowers of ''Mimulus cardinalis'' may function primarily to discourage bee visitation. In ''[[Penstemon]]'', flower traits that discourage bee pollination may be more influential on the flowers' evolutionary change than 'pro-bird' adaptations, but adaptation 'towards' birds and 'away' from bees can happen simultaneously. However, some flowers such as ''[[Heliconia angusta]]'' appear not to be as specifically ornithophilous as had been supposed: the species is occasionally (151 visits in 120 hours of observation) visited by ''[[Trigona]]'' stingless bees. These bees are largely pollen robbers in this case, but may also serve as pollinators.
  −
 
  −
花朵聚集在一起以利用同类鸟的优势。<ref name="Brown">{{cite journal |title=Convergence, Competition, and Mimicry in a Temperate Community of Hummingbird-Pollinated Flowers|author1=Brown James H. |author2=Kodric-Brown Astrid |s2cid=53604204 |journal=Ecology |year=1979 |volume=60 |issue=5 |pages=1022–1035 |doi=10.2307/1936870|jstor=1936870}}</ref>花朵为了传粉者而相互竞争,而适应性减少了这种竞争的不利影响。鸟类可以在恶劣天气下飞行,这一事实使它们在蜜蜂和其他昆虫不活跃的地方成为更有效的授粉者。由于这个原因,鸟媒花在处在昆虫定居或植物较少的孤立环境中的冬季开放的花朵中更容易会出现。<ref name="Brown" /><ref>{{cite journal |last1=Cronk |first1=Quentin |last2=Ojeda |first2=Isidro |title=Bird-pollinated flowers in an evolutionary and molecular context |journal=Journal of Experimental Botany |date=2008 |volume=59 |issue=4 |pages=715–727 |doi=10.1093/jxb/ern009|pmid=18326865|doi-access=free }}</ref>鸟类传粉的花朵通常比昆虫传粉的花朵有更多的花蜜和更高的糖分产量。<ref name="Stiles">{{cite journal |title=Geographical Aspects of Bird Flower Coevolution, with Particular Reference to Central America |author=Stiles, F. Gary |journal=Annals of the Missouri Botanical Garden |year=1981 |volume=68 |issue=2 |pages=323–351 |doi=10.2307/2398801|jstor=2398801|url=https://www.biodiversitylibrary.org/part/38387 }}</ref>这也正迎合了鸟类高能量的需求,作为了花在面临自然选择时最重要的决定因素<ref name="Stiles" />。在''沟酸浆属''中,花瓣中红色素和花蜜产量的增加明显减少了蜜蜂授粉的比例,而对于蜂鸟则相反;同时花朵表面积越大蜜蜂授粉的比例也就越高。因此,红雀花中的红色色素可能主要起到抑制蜜蜂拜访的作用。<ref>{{cite journal |last1=Schemske |first1=Douglas W. |last2=Bradshaw |first2=H.D. |title=Pollinator preference and the evolution of floral traits in monkeyflowers (''Mimulus'') |journal=Proceedings of the National Academy of Sciences |date=1999 |volume=96 |issue=21 |pages=11910–11915 |doi=10.1073/pnas.96.21.11910|pmid=10518550 |bibcode=1999PNAS...9611910S |pmc=18386|doi-access=free }}</ref>在''钓钟柳''中,阻碍蜜蜂授粉的花朵特征可能比“支持鸟类”的适应性对花朵进化变化的影响更大,但是“亲和”鸟类和“疏离”蜜蜂的适应性变化可以同时发生<ref>{{cite journal |last1=Castellanos|first1=M. C. |last2=Wilson |first2=P. |last3=Thomson |first3=J.D. |title='Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in Penstemon flowers |journal=Journal of Evolutionary Biology |date=2005 |volume=17 |issue=4 |pages=876–885 |doi=10.1111/j.1420-9101.2004.00729.x |pmid=15271088|doi-access=free }}</ref>。然而,一些花,如''海里康属的大鹤望兰''似乎并不像人们想象的那样特别喜好鸟类:这个物种偶尔(在120小时的观察中被造访了151次)被无刺的''无刺针属''的蜜蜂拜访。在这种情况下,这些蜜蜂更多是作为了花粉盗窃者,但也可能充当传粉者。<ref>{{cite journal |last1=Stein |first1=Katharina |last2=Hensen |first2=Isabell |title=Potential Pollinators and Robbers: A Study of the Floral Visitors of Heliconia Angusta (Heliconiaceae) And Their Behaviour |journal=Journal of Pollination Ecology |date=2011 |volume=4 |issue=6 |pages=39–47|doi=10.26786/1920-7603(2011)7|doi-access=free }}</ref>
  −
 
  −
Following their respective breeding seasons, several species of hummingbirds occur at the same locations in [[North America]], and several hummingbird flowers bloom simultaneously in these habitats. These flowers have [[convergent evolution|converged]] to a common [[morphology (biology)|morphology]] and color because these are effective at attracting the birds. Different lengths and curvatures of the [[petal#Corolla|corolla]] tubes can affect the efficiency of extraction in hummingbird species in relation to differences in bill morphology. Tubular flowers force a bird to orient its bill in a particular way when probing the flower, especially when the bill and corolla are both curved. This allows the plant to place [[pollen]] on a certain part of the bird's body, permitting a variety of morphological [[co-adaptation]]s.
     −
在各自的繁殖季节之后,几种蜂鸟出现在北美的同一地点,而这几种蜂鸟的花同时也在这些栖息地开放。这些花聚集在共同的一个形态和颜色,因为这些形态和颜色能够有效地吸引鸟类。蜂鸟喙形态的不同决定了花冠管的长度和曲率对蜂鸟提取效率的影响。管状花朵迫使鸟类在寻找花朵时以一种特殊的方式来调整喙的方向,尤其是当喙和花冠都是弯曲的时候。这允许了植物可以把花粉携于鸟身体的某一部分,从而实现了各种形态上的协同适应。<ref name="Stiles" />
+
花朵聚集在一起以利用同类鸟的优势。<ref name="Brown">{{cite journal |title=Convergence, Competition, and Mimicry in a Temperate Community of Hummingbird-Pollinated Flowers|author1=Brown James H. |author2=Kodric-Brown Astrid |s2cid=53604204 |journal=Ecology |year=1979 |volume=60 |issue=5 |pages=1022–1035 |doi=10.2307/1936870|jstor=1936870}}</ref>花朵为了传粉者而相互竞争,而适应性减少了这种竞争的不利影响。鸟类可以在恶劣天气下飞行,这一事实使它们在蜜蜂和其他昆虫不活跃的地方成为更有效的授粉者。由于这个原因,鸟媒花在处在昆虫定居或植物较少的孤立环境中的冬季开放的花朵中更容易会出现。<ref name="Brown" /><ref>{{cite journal |last1=Cronk |first1=Quentin |last2=Ojeda |first2=Isidro |title=Bird-pollinated flowers in an evolutionary and molecular context |journal=Journal of Experimental Botany |date=2008 |volume=59 |issue=4 |pages=715–727 |doi=10.1093/jxb/ern009|pmid=18326865|doi-access=free }}</ref>鸟类传粉的花朵通常比昆虫传粉的花朵有更多的花蜜和更高的糖分产量。<ref name="Stiles">{{cite journal |title=Geographical Aspects of Bird Flower Coevolution, with Particular Reference to Central America |author=Stiles, F. Gary |journal=Annals of the Missouri Botanical Garden |year=1981 |volume=68 |issue=2 |pages=323–351 |doi=10.2307/2398801|jstor=2398801|url=https://www.biodiversitylibrary.org/part/38387 }}</ref>这也正迎合了鸟类高能量的需求,作为了花在面临自然选择时最重要的决定因素<ref name="Stiles" />。在''[[Mimulus|沟酸浆属]]''中,花瓣中红色素和花蜜产量的增加明显减少了蜜蜂授粉的比例,而对于蜂鸟则相反;同时花朵表面积越大蜜蜂授粉的比例也就越高。因此,红雀花中的红色色素可能主要起到抑制蜜蜂拜访的作用。<ref>{{cite journal |last1=Schemske |first1=Douglas W. |last2=Bradshaw |first2=H.D. |title=Pollinator preference and the evolution of floral traits in monkeyflowers (''Mimulus'') |journal=Proceedings of the National Academy of Sciences |date=1999 |volume=96 |issue=21 |pages=11910–11915 |doi=10.1073/pnas.96.21.11910|pmid=10518550 |bibcode=1999PNAS...9611910S |pmc=18386|doi-access=free }}</ref>在''[[Penstemon|钓钟柳]]''中,阻碍蜜蜂授粉的花朵特征可能比“支持鸟类”的适应性对花朵进化变化的影响更大,但是“亲和”鸟类和“疏离”蜜蜂的适应性变化可以同时发生<ref>{{cite journal |last1=Castellanos|first1=M. C. |last2=Wilson |first2=P. |last3=Thomson |first3=J.D. |title='Anti-bee' and 'pro-bird' changes during the evolution of hummingbird pollination in Penstemon flowers |journal=Journal of Evolutionary Biology |date=2005 |volume=17 |issue=4 |pages=876–885 |doi=10.1111/j.1420-9101.2004.00729.x |pmid=15271088|doi-access=free }}</ref>。然而,一些花,如''[[Heliconia angusta|海里康属]]的大鹤望兰''似乎并不像人们想象的那样特别喜好鸟类:这个物种偶尔(在120小时的观察中被造访了151次)被无刺的''[[Trigona|无刺针属]]''的蜜蜂拜访。在这种情况下,这些蜜蜂更多是作为了花粉盗窃者,但也可能充当传粉者。<ref>{{cite journal |last1=Stein |first1=Katharina |last2=Hensen |first2=Isabell |title=Potential Pollinators and Robbers: A Study of the Floral Visitors of Heliconia Angusta (Heliconiaceae) And Their Behaviour |journal=Journal of Pollination Ecology |date=2011 |volume=4 |issue=6 |pages=39–47|doi=10.26786/1920-7603(2011)7|doi-access=free }}</ref>
   −
Ornithophilous flowers need to be conspicuous to birds. Birds have their greatest spectral sensitivity and finest hue discrimination at the red end of the [[visual spectrum]], so red is particularly conspicuous to them. Hummingbirds may also be able to see ultraviolet "colors". The prevalence of ultraviolet patterns and nectar guides in nectar-poor entomophilous (insect-pollinated) flowers warns the bird to avoid these flowers. Each of the two subfamilies of hummingbirds, the [[Phaethornithinae]] (hermits) and the [[Trochilinae]], has evolved in conjunction with a particular set of flowers. Most Phaethornithinae species are associated with large [[monocotyledon]]ous herbs, while the Trochilinae prefer [[dicotyledon]]ous plant species.
+
在各自的繁殖季节之后,几种蜂鸟出现在[[North America|北美]]的同一地点,而这几种蜂鸟的花同时也在这些栖息地开放。这些花[[convergent evolution|聚集]]在共同的一个[[morphology (biology)|形态]]和颜色,因为这些形态和颜色能够有效地吸引鸟类。[[petal#Corolla|花冠]]管长度和曲率的不同会影响与喙形态差异相关的蜂鸟物种的提取作用。管状花朵迫使鸟类在寻找花朵时以一种特殊的方式来调整喙的方向,尤其是当喙和花冠都是弯曲的时候。这允许了植物可以把[[pollen|花粉]]携于鸟身体的某一部分,从而实现了各种形态上的[[co-adaptation|协同适应]]。<ref name="Stiles" /><!-- could extend examples of mutualism indefinitely - might mention fish/anemone [[cleaning symbiosis]] etc.
<!-- could extend examples of mutualism indefinitely - might mention fish/anemone [[cleaning symbiosis]] etc.
   
[[File:Common clownfish curves dnsmpl.jpg|thumb|[[Ocellaris clownfish]] and [[Heteractis magnifica|Ritter's sea anemones]] live together in a [[mutualism (biology)|mutual]] service-service symbiosis, the fish driving off butterfly fish and the anemone's tentacles protecting the fish from predators.]]
 
[[File:Common clownfish curves dnsmpl.jpg|thumb|[[Ocellaris clownfish]] and [[Heteractis magnifica|Ritter's sea anemones]] live together in a [[mutualism (biology)|mutual]] service-service symbiosis, the fish driving off butterfly fish and the anemone's tentacles protecting the fish from predators.]]
 
-->
 
-->
   −
喜鸟类的花需要引起鸟的注意。<ref name="Stiles" />鸟类的视觉光谱在红色一端拥有极好的色调辨别能力和最强的光谱敏感性<ref name="Stiles" />,所以红色对它们来说特别显眼;蜂鸟可能也可以看到紫外线的“颜色”。在缺少花蜜的昆虫传粉的花朵中,紫外线图案和花蜜的流行会向导和警告鸟类去避开这些花。<ref name="Stiles" />蜂鸟的每两亚科——隐蜂鸟亚科(hermits)和蜂鸟亚科的每一个亚科都与一组特定的花一同演化。大多数种类与大型单子叶植物有关,而金线菊亚科更喜欢双子叶植物。<ref name="Stiles" />
+
喜鸟类的花需要引起鸟的注意。<ref name="Stiles" />鸟类的[[visual spectrum|视觉光谱]]在红色一端拥有极好的色调辨别能力和最强的光谱敏感性<ref name="Stiles" />,所以红色对它们来说特别显眼;蜂鸟可能也可以看到紫外线的“颜色”。在缺少花蜜的昆虫传粉的花朵中,紫外线图案和花蜜的流行会向导和警告鸟类去避开这些花。<ref name="Stiles" />蜂鸟的每两亚科——[[Phaethornithinae|隐蜂鸟亚科]](hermits)和[[Trochilinae|蜂鸟亚科]]的每一个亚科都与一组特定的花一同演化。大多数种类与大型[[monocotyledon|单子叶]]植物有关,而金线菊亚科更喜欢[[dicotyledon|双子叶]]植物。<ref name="Stiles" />
    
===无花果的生殖与无花果蜂===
 
===无花果的生殖与无花果蜂===
 
[[File:Ficus plant.jpg|thumb|left|一颗[[Common fig|无花果树]] 露出它许多细小的结种成熟[[gynoecia|雌蕊群]]。它们被无花果蜂''[[Blastophaga psenes]]''授粉,在 栽培的无花果树中也有无性 品种。<ref name=Suleman/>|链接=Special:FilePath/Ficus_plant.jpg]]
 
[[File:Ficus plant.jpg|thumb|left|一颗[[Common fig|无花果树]] 露出它许多细小的结种成熟[[gynoecia|雌蕊群]]。它们被无花果蜂''[[Blastophaga psenes]]''授粉,在 栽培的无花果树中也有无性 品种。<ref name=Suleman/>|链接=Special:FilePath/Ficus_plant.jpg]]
 
{{Main|Reproductive coevolution in Ficus}}
 
{{Main|Reproductive coevolution in Ficus}}
The genus ''[[Ficus]]'' is composed of 800 species of vines, shrubs, and trees, including the cultivated fig, defined by their [[syconium]]s, the fruit-like vessels that either hold female flowers or pollen on the inside. Each fig species has its own [[fig wasp]] which (in most cases) pollinates the fig, so a tight mutual dependence has evolved and persisted throughout the genus.花的容器,里面装着雌花或花粉
+
The genus is composed of 800 species of vines, shrubs, and trees, including the cultivated fig, defined by their [[syconium]]s, the fruit-like vessels that either hold female flowers or pollen on the inside. Each fig species has its own which (in most cases) pollinates the fig, so a tight mutual dependence has evolved and persisted throughout the genus.花的容器,里面装着雌花或花粉
   −
''榕''属植物由800种藤本植物、灌木和乔木构成,其中包括栽培的无花果、由它们可以保持雌花和花粉在其中的果实状萼的榕果所定义。每一种榕树都有自己的榕小蜂(在大多数情况下)为榕树授粉,由此一种贯穿于这个属中紧密的相互依赖关系已然形成并持续存在。<ref name="Suleman">{{cite journal |last1=Suleman |first1=Nazia |last2=Sait |first2=Steve |last3=Compton |first3=Stephen G. |title=Female figs as traps: Their impact on the dynamics of an experimental fig tree-pollinator-parasitoid community |journal=Acta Oecologica |volume=62 |year=2015 |pages=1–9 |doi=10.1016/j.actao.2014.11.001 |bibcode=2015AcO....62....1S|url=http://eprints.whiterose.ac.uk/85568/7/Female%20plants%20as%20traps%20paper%20%283%29.pdf }}</ref>
+
''[[Ficus|]]''属植物由800种藤本植物、灌木和乔木构成,其中包括栽培的无花果、由它们可以保持雌花和花粉在其中的果实状萼的榕果所定义。每一种榕树都有自己的[[fig wasp|榕小蜂]](在大多数情况下)为榕树授粉,由此一种贯穿于这个属中紧密的相互依赖关系已然形成并持续存在。<ref name="Suleman">{{cite journal |last1=Suleman |first1=Nazia |last2=Sait |first2=Steve |last3=Compton |first3=Stephen G. |title=Female figs as traps: Their impact on the dynamics of an experimental fig tree-pollinator-parasitoid community |journal=Acta Oecologica |volume=62 |year=2015 |pages=1–9 |doi=10.1016/j.actao.2014.11.001 |bibcode=2015AcO....62....1S|url=http://eprints.whiterose.ac.uk/85568/7/Female%20plants%20as%20traps%20paper%20%283%29.pdf }}</ref>
    
[[File:Ant - Pseudomyrmex species, on Bull Thorn Acacia (Acacia cornigera) with Beltian bodies, Caves Branch Jungle Lodge, Belmopan, Belize - 8505045055.jpg|thumb|right|''拟家蚁''和为其供给蛋白质的贝尔特体在牛角金合欢(''[[Vachellia cornigera]]'')上<ref name="Hölldobler-532"/>|链接=Special:FilePath/Ant_-_Pseudomyrmex_species,_on_Bull_Thorn_Acacia_(Acacia_cornigera)_with_Beltian_bodies,_Caves_Branch_Jungle_Lodge,_Belmopan,_Belize_-_8505045055.jpg]]
 
[[File:Ant - Pseudomyrmex species, on Bull Thorn Acacia (Acacia cornigera) with Beltian bodies, Caves Branch Jungle Lodge, Belmopan, Belize - 8505045055.jpg|thumb|right|''拟家蚁''和为其供给蛋白质的贝尔特体在牛角金合欢(''[[Vachellia cornigera]]'')上<ref name="Hölldobler-532"/>|链接=Special:FilePath/Ant_-_Pseudomyrmex_species,_on_Bull_Thorn_Acacia_(Acacia_cornigera)_with_Beltian_bodies,_Caves_Branch_Jungle_Lodge,_Belmopan,_Belize_-_8505045055.jpg]]
第86行: 第64行:  
{{Main|Pseudomyrmex ferruginea}}
 
{{Main|Pseudomyrmex ferruginea}}
   −
The [[acacia ant]] (''Pseudomyrmex ferruginea'') is an obligate plant ant that protects at least five species of "Acacia" (''[[Vachellia]]''){{efn|The acacia ant protects at least 5 species of "Acacia", now all renamed to ''Vachellia'': ''[[Vachellia chiapensis|V. chiapensis]]'', ''[[Vachellia collinsii|V. collinsii]]'', ''[[Vachellia cornigera|V. cornigera]]'', ''[[Vachellia hindsii|V. hindsii]]'', and ''[[Vachellia sphaerocephala|V. sphaerocephala]]''.}} from preying insects and from other plants competing for sunlight, and the tree provides nourishment and shelter for the ant and its larvae. Such mutualism is not automatic: other ant species exploit trees without reciprocating, following different [[evolutionary strategy|evolutionary strategies]]. These cheater ants impose important host costs via damage to tree reproductive organs, though their net effect on host fitness is not necessarily negative and, thus, becomes difficult to forecast.
+
{{efn|The acacia ant protects at least 5 species of "Acacia", now all renamed to ''Vachellia'': ''[[Vachellia chiapensis|V. chiapensis]]'', ''[[Vachellia collinsii|V. collinsii]]'', ''[[Vachellia cornigera|V. cornigera]]'', ''[[Vachellia hindsii|V. hindsii]]'', and ''[[Vachellia sphaerocephala|V. sphaerocephala]]''.}}
   −
相思树蚁(''Pseudomyrmex ferruginea'')是一种能保护至少5种金合欢树(''Vachellia'')免受食用牛角相思树的昆虫和其他植物争夺阳光的专性植物蚂蚁,而这种树则为这种蚂蚁及其幼虫提供营养和庇护<ref name="Hölldobler-532">{{cite book |last1=Hölldobler |first1=Bert |last2=Wilson |first2=Edward O. |title=The ants |publisher=Harvard University Press |year=1990 |url=https://archive.org/details/ants0000hlld |url-access=registration |isbn=978-0-674-04075-5 |pages=[https://archive.org/details/ants0000hlld/page/532 532]–533}}</ref><ref>{{cite web|last=National Geographic|title=Acacia Ant Video|url=http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|url-status=dead|archive-url=https://web.archive.org/web/20071107085438/http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|archive-date=2007-11-07}}</ref>。这种互利共生并不是自然而然的:其他蚂蚁种类遵循不同的进化策略,利用树木而不作回报;这些欺诈性的蚂蚁通过破坏树木的生殖器官对寄主施加重大伤害,不过它们对寄主健康的净影响并不一定是负面的,因此难以预测。<ref>{{cite journal |doi=10.1073/pnas.1006872107 |vauthors=Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM |year=2010 |title=Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=107 |issue=40 |pages=17234–9 |pmid=20855614 |pmc=2951420 |bibcode=2010PNAS..10717234P|doi-access=free }}</ref><ref>{{cite journal |title=Kinship and incompatibility between colonies of the acacia ant ''Pseudomyrex ferruginea'' |journal=Behavioral Ecology and Sociobiology |first=Alex |last=Mintzer |author2=Vinson, S.B. |volume=17 |issue=1 |pages=75–78 |doi=10.1007/bf00299432 |jstor=4599807 |year=1985|s2cid=9538185 }}</ref>
+
[[acacia ant|相思树蚁]](''Pseudomyrmex ferruginea'')是一种能保护至少5种“金合欢树”(''[[Vachellia]]'')免受食用牛角相思树的昆虫和其他植物争夺阳光的专性植物蚂蚁,而这种树则为这种蚂蚁及其幼虫提供营养和庇护<ref name="Hölldobler-532">{{cite book |last1=Hölldobler |first1=Bert |last2=Wilson |first2=Edward O. |title=The ants |publisher=Harvard University Press |year=1990 |url=https://archive.org/details/ants0000hlld |url-access=registration |isbn=978-0-674-04075-5 |pages=[https://archive.org/details/ants0000hlld/page/532 532]–533}}</ref><ref>{{cite web|last=National Geographic|title=Acacia Ant Video|url=http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|url-status=dead|archive-url=https://web.archive.org/web/20071107085438/http://video.nationalgeographic.com/video/player/animals/bugs-animals/ants-and-termites/ant_acaciatree.html|archive-date=2007-11-07}}</ref>。这种互利共生并不是自然而然的:其他蚂蚁种类遵循不同的[[evolutionary strategy|进化策略]],利用树木而不作回报;这些欺诈性的蚂蚁通过破坏树木的生殖器官对寄主施加重大伤害,不过它们对寄主健康的净影响并不一定是负面的,因此难以预测。<ref>{{cite journal |doi=10.1073/pnas.1006872107 |vauthors=Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM |year=2010 |title=Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=107 |issue=40 |pages=17234–9 |pmid=20855614 |pmc=2951420 |bibcode=2010PNAS..10717234P|doi-access=free }}</ref><ref>{{cite journal |title=Kinship and incompatibility between colonies of the acacia ant ''Pseudomyrex ferruginea'' |journal=Behavioral Ecology and Sociobiology |first=Alex |last=Mintzer |author2=Vinson, S.B. |volume=17 |issue=1 |pages=75–78 |doi=10.1007/bf00299432 |jstor=4599807 |year=1985|s2cid=9538185 }}</ref>
    
==宿主和寄生虫==
 
==宿主和寄生虫==
68

个编辑