更改

添加19字节 、 2023年7月17日 (一) 08:19
无编辑摘要
第150行: 第150行:  
该工作的一个重要优点就是该框架能同时处理离散和连续动力学系统,通过将神经网络看作是给定输入条件下的高斯分布<math>p\left(Y| X\right) </math>,可以定义新的有效信息计算公式,公式如下所示:
 
该工作的一个重要优点就是该框架能同时处理离散和连续动力学系统,通过将神经网络看作是给定输入条件下的高斯分布<math>p\left(Y| X\right) </math>,可以定义新的有效信息计算公式,公式如下所示:
   −
<math>\begin{gathered}EI_L(f)=I(do(X\sim U([-L,L]^n));Y)\approx-\frac{n+nln(2\pi)+\sum_{i=1}^n\sigma_i^2}2+nln(2L)+\\\operatorname{E}_{X\sim U([-L,L]^n)}(ln|det(\partial_{X^{\prime}}f(X)))|)\end{gathered} </math>
+
<math>\begin{gathered}EI_L(f)=I(do(X\sim U([-L,L]^n));Y)\approx-\frac{n+nln(2\pi)+\sum_{i=1}^n\sigma_i^2}2+nln(2L)+\operatorname{E}_{X\sim U([-L,L]^n)}(ln|det(\partial_{X^{\prime}}f(X)))|)\end{gathered} </math>
    
其中<math>U\left(\left[-L, L\right]^n\right) </math>表示范围<math>\left[-L ,L\right] </math>在上的<math>n </math>维均匀分布,<math>\sigma_i </math>是输出<math>Y_i </math>的标准差,可以通过<math>Y_i </math>的均方误差来估计,<math>det </math>表示函数<math>f </math>的雅可比行列式。为了消除有效信息计算公式会受到输入维度的影响,作者定义了新的有效信息计算公式<math>d E I_L(f) </math>,具体公式如下所示:
 
其中<math>U\left(\left[-L, L\right]^n\right) </math>表示范围<math>\left[-L ,L\right] </math>在上的<math>n </math>维均匀分布,<math>\sigma_i </math>是输出<math>Y_i </math>的标准差,可以通过<math>Y_i </math>的均方误差来估计,<math>det </math>表示函数<math>f </math>的雅可比行列式。为了消除有效信息计算公式会受到输入维度的影响,作者定义了新的有效信息计算公式<math>d E I_L(f) </math>,具体公式如下所示:
第228行: 第228行:  
因此,两个领域之间的相似性和共同特征可以帮助我们将一个领域的思想和技术借鉴到另一个领域。例如,具有世界模型的智能体可以将复杂系统作为一个整体来进行相互作用,并从相互作用中获得涌现的因果规律,从而更好的帮助我们做因果涌现识别任务。反过来,最大化有效信息技术也可以用于强化学习,使世界模型具有更强的因果特性。
 
因此,两个领域之间的相似性和共同特征可以帮助我们将一个领域的思想和技术借鉴到另一个领域。例如,具有世界模型的智能体可以将复杂系统作为一个整体来进行相互作用,并从相互作用中获得涌现的因果规律,从而更好的帮助我们做因果涌现识别任务。反过来,最大化有效信息技术也可以用于强化学习,使世界模型具有更强的因果特性。
    +
=== 参考文献 ===
 
<references />
 
<references />
138

个编辑