更改

添加6字节 、 2023年7月23日 (日) 01:07
第122行: 第122行:  
当<math>\mathrm{\Delta}>0 </math>且<math>\mathrm{\Gamma}=0 </math>时,宏观状态<math>V </math>发生因果涌现且发生因果解耦。
 
当<math>\mathrm{\Delta}>0 </math>且<math>\mathrm{\Gamma}=0 </math>时,宏观状态<math>V </math>发生因果涌现且发生因果解耦。
   −
该方法避开讨论粗粒化策略。也存在很多缺点:1)该方法提出的三个指标 ,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
+
该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法提出的三个指标 ,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
    
====神经信息压缩方法====
 
====神经信息压缩方法====
138

个编辑