更改

大小无更改 、 2020年4月15日 (三) 00:24
第182行: 第182行:  
===自相似 Self-similarity===
 
===自相似 Self-similarity===
   −
[[File:P19Mandelbrot_zoom.gif|200px|thumb|right|曼德布洛特集中的自相似性通过放大一个圆形“芽苞”,并将其中心往负x轴方向迁移来体现。从(- 1,0)到(- 1.31,0) ,而视图从0.5x0.5放大到0.12x0.12,以接近 Feigenbaum 比率Ħẟ]]
+
[[File:P19Mandelbrot_zoom.gif|250px|thumb|right|曼德布洛特集中的自相似性通过放大一个圆形“芽苞”,并将其中心往负x轴方向迁移来体现。从(- 1,0)到(- 1.31,0) ,而视图从0.5x0.5放大到0.12x0.12,以接近 Feigenbaum 比率Ħẟ]]
    
在 Misiurewicz 点附近,对曼德布洛特集进行放大,能够观察到自相似性。将其收敛于一个极限集后,我们还推测在广义 Feigenbaum 点(例如-1.401155或-0.1528 + 1.0397 i)周围能够观察到自相似的特征。<ref>{{cite journal | last1 = Lei | year = 1990 | title = Similarity between the Mandelbrot set and Julia Sets | url = http://projecteuclid.org/euclid.cmp/1104201823| journal = Communications in Mathematical Physics | volume = 134 | issue = 3| pages = 587–617 | doi=10.1007/bf02098448| bibcode = 1990CMaPh.134..587L}}</ref><ref>{{cite book |author=J. Milnor |chapter=Self-Similarity and Hairiness in the Mandelbrot Set |editor=M. C. Tangora |location=New York |pages=211–257 |title=Computers in Geometry and Topology |url=https://books.google.com/books?id=wuVJAQAAIAAJ |year=1989|publisher=Taylor & Francis}})</ref>
 
在 Misiurewicz 点附近,对曼德布洛特集进行放大,能够观察到自相似性。将其收敛于一个极限集后,我们还推测在广义 Feigenbaum 点(例如-1.401155或-0.1528 + 1.0397 i)周围能够观察到自相似的特征。<ref>{{cite journal | last1 = Lei | year = 1990 | title = Similarity between the Mandelbrot set and Julia Sets | url = http://projecteuclid.org/euclid.cmp/1104201823| journal = Communications in Mathematical Physics | volume = 134 | issue = 3| pages = 587–617 | doi=10.1007/bf02098448| bibcode = 1990CMaPh.134..587L}}</ref><ref>{{cite book |author=J. Milnor |chapter=Self-Similarity and Hairiness in the Mandelbrot Set |editor=M. C. Tangora |location=New York |pages=211–257 |title=Computers in Geometry and Topology |url=https://books.google.com/books?id=wuVJAQAAIAAJ |year=1989|publisher=Taylor & Francis}})</ref>
7,129

个编辑