更改

添加600字节 、 2024年3月5日 (星期二)
无编辑摘要
第1行: 第1行:     
== Sloppiness与Sloppy理论 ==
 
== Sloppiness与Sloppy理论 ==
sloppiness是多参数系统的中常见的一种特性。具有这种特性的模型的参数往往有很多个,但是模型的行为仅取决于少数几个参数或参数的线性组合,其它参数或参数 的线性组合对模型的影响微乎其微。sloppiness特性在系统生物学<ref>Sloppiness in spontaneously active neuronal networks.,Panas D, Amin H, Maccione A, Muthmann O, van Rossum M, Berdondini L,  Hennig MH,J  Neurosci. 2015 Jun 3;35(22):8480-92. doi:  10.1523/JNEUROSCI.4421-14.2015. PMID: 26041916; PMCID: PMC4452554</ref><ref>Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively.Adrian Ponce-Alvarez,Gabriela Mochol, Ainhoa Hermoso-Mendizabal,Jaime de la Rocha ,Gustavo Deco, (2020)eLife 9:e53268.</ref><ref>Sloppy models and parameter indeterminacy in systems biology:  [https://arxiv.org/abs/q-bio/0701039 "Universally Sloppy Parameter Sensitivities in Systems Biology"], Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers, James P. Sethna, PLoS Comput Biol3(10) e189 (2007). ([http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030189 PLoS], [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030189 doi:10.1371/journal.pcbi.0030189]),  [https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf pdf]). [Reviewed in [http://biomedicalcomputationreview.org/4/1/4.pdf NewsBytes] of [http://biomedicalcomputationreview.org/ Biomedical Computation Review] (Winter 07/08); rated "Exceptional" on Faculty of 1000]. </ref>、物理学<ref>Sloppiness, information geometry, and model reduction:  [https://arxiv.org/abs/1501.07668 Perspective: Sloppiness and Emergent Theories in Physics, Biology, and Beyond],  Mark K. Transtrum, Benjamin B. Machta, Kevin S. Brown, Bryan C. Daniels, Christopher R. Myers, and James P. Sethna,  [https://pubs.aip.org/aip/jcp/article/143/1/010901/566995/Perspective-Sloppiness-and-emergent-theories-in J. Chem. Phys. '''143''', 010901 (2015)],  </ref>和数学<ref>[https://gutengroup.mcb.arizona.edu/wp-content/uploads/Mannakee2016.pdf Sloppiness, information geometry, and model reduction:  Sloppiness and the geometry of parameter space,]  Mannakee B.K., Ragsdale A.P., Transtrum M.K., Gutenkunst R.N.,  [https://link.springer.com/chapter/10.1007/978-3-319-21296-8_11 Uncertainty in  Biology, Volume 17 of the series Studies in Mechanobiology, Tissue    Engineering and Biomaterials],  </ref>系统中无处不在。
+
sloppiness是多参数系统的中常见的一种特性。具有这种特性的模型的参数往往有很多个,但是模型的行为仅取决于少数几个参数或参数的线性组合,其它参数或参数 的线性组合对模型的影响微乎其微。sloppiness特性在系统生物学<ref name = "Panas">Sloppiness in spontaneously active neuronal networks.,Panas D, Amin H, Maccione A, Muthmann O, van Rossum M, Berdondini L,  Hennig MH,J  Neurosci. 2015 Jun 3;35(22):8480-92. doi:  10.1523/JNEUROSCI.4421-14.2015. PMID: 26041916; PMCID: PMC4452554</ref><ref>Cortical state transitions and stimulus response evolve along stiff and sloppy parameter dimensions, respectively.Adrian Ponce-Alvarez,Gabriela Mochol, Ainhoa Hermoso-Mendizabal,Jaime de la Rocha ,Gustavo Deco, (2020)eLife 9:e53268.</ref><ref>Sloppy models and parameter indeterminacy in systems biology:  [https://arxiv.org/abs/q-bio/0701039 "Universally Sloppy Parameter Sensitivities in Systems Biology"], Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers, James P. Sethna, PLoS Comput Biol3(10) e189 (2007). ([http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030189 PLoS], [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030189 doi:10.1371/journal.pcbi.0030189]),  [https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf pdf]). [Reviewed in [http://biomedicalcomputationreview.org/4/1/4.pdf NewsBytes] of [http://biomedicalcomputationreview.org/ Biomedical Computation Review] (Winter 07/08); rated "Exceptional" on Faculty of 1000]. </ref>、物理学<ref>Sloppiness, information geometry, and model reduction:  [https://arxiv.org/abs/1501.07668 Perspective: Sloppiness and Emergent Theories in Physics, Biology, and Beyond],  Mark K. Transtrum, Benjamin B. Machta, Kevin S. Brown, Bryan C. Daniels, Christopher R. Myers, and James P. Sethna,  [https://pubs.aip.org/aip/jcp/article/143/1/010901/566995/Perspective-Sloppiness-and-emergent-theories-in J. Chem. Phys. '''143''', 010901 (2015)],  </ref>和数学<ref>[https://gutengroup.mcb.arizona.edu/wp-content/uploads/Mannakee2016.pdf Sloppiness, information geometry, and model reduction:  Sloppiness and the geometry of parameter space,]  Mannakee B.K., Ragsdale A.P., Transtrum M.K., Gutenkunst R.N.,  [https://link.springer.com/chapter/10.1007/978-3-319-21296-8_11 Uncertainty in  Biology, Volume 17 of the series Studies in Mechanobiology, Tissue    Engineering and Biomaterials],  </ref>系统中无处不在。
      第20行: 第20行:  
Sloppiness在生物学领域最为普遍,但在其它领域也并不缺席。从昆虫飞行模型,到原子间势,再到加速器设计,许多目前常用的模型都是sloppy的。例如,量子蒙特卡洛是求解原子和小分子的能量和量子行为的最精确的工具;然而,赛勒斯·乌姆里加(Cyrus Umrigar)在这种方法基础上建立的非常精确的变分波函数却是极度sloppy(b列)。
 
Sloppiness在生物学领域最为普遍,但在其它领域也并不缺席。从昆虫飞行模型,到原子间势,再到加速器设计,许多目前常用的模型都是sloppy的。例如,量子蒙特卡洛是求解原子和小分子的能量和量子行为的最精确的工具;然而,赛勒斯·乌姆里加(Cyrus Umrigar)在这种方法基础上建立的非常精确的变分波函数却是极度sloppy(b列)。
   −
即便参数值与真实值相差很大,有sloppy特性的模型也可以做出精确的预测。在数学中有一个经典的拟合难题<ref>Formulation, application to fitting algorithms:  [https://arxiv.org/abs/0909.3884 "Why  are nonlinear fits to data so challenging?"], Mark K. Transtrum,  Benjamin B. Machta, and James P. Sethna,  [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.060201 Phys. Rev. Lett.] '''104''', 060201 (2010).</ref>:用指数衰变和去拟合放射性模型(c列和d列)得到的衰变常数与真实衰变常数截然不同,但短期内模型预测值与真实值却相差不大 。最后,用多项式系数模型<math>\sum_i a_it^i</math>拟合数据是sloppy的(h列)。但用正交多项式基<math>\sum_ib_iH_i</math>(<math>H_i</math>是一组正交多项式基)去拟合时得到的模型却往往是非sloppy的,这是因为从<math>t^i</math>到<math>H_i</math>的变换是高度非正交的。
+
即便参数值与真实值相差很大,有sloppy特性的模型也可以做出精确的预测。在数学中有一个经典的拟合难题<ref>Formulation, application to fitting algorithms:  [https://arxiv.org/abs/0909.3884 "Why  are nonlinear fits to data so challenging?"], Mark K. Transtrum,  Benjamin B. Machta, and James P. Sethna,  [https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.060201 Phys. Rev. Lett.] '''104''', 060201 (2010).</ref>:用指数衰变和去拟合放射性模型(c列和d列)得到的衰变常数与真实衰变常数截然不同,但短期内模型预测值与真实值却相差不大 。最后,用多项式系数模型<math>\sum_i a_it^i</math>拟合数据是sloppy的(h列)。但用正交多项式基<math>\sum_ib_iH_i</math>(<math>H_i</math>是一组正交多项式基)去拟合时得到的模型却往往是非sloppy的,这是因为从<math>t^i</math>到<math>H_i</math>的变换是高度非正交的<ref>Expanded formulation, geometry of model manifold:      [[9. Expanded formulation, geometry of model manifold:      "Geometry of nonlinear least squares with applications to sloppy models and optimization",  Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna  Phys. Rev. E 83, 036701 (2011);  |"Geometry of nonlinear least squares with applications to sloppy models and optimization"]],  Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna  [https://journals.aps.org/pre/abstract/10.1103/PhysRevE.83.036701 Phys. Rev. E '''83''', 036701 (2011)];  </ref>。
   −
Sloppy模型有着多种形式,每个模型的sloppniess的原因并不完全相同,部分系统的sloppiness的原因可以从数学上进行分析。但是不同系统的sloppiniess具体原因仍然极具复杂性<ref>[1]</ref>。
+
Sloppy模型有着多种形式,每个模型的sloppniess的原因并不完全相同,部分系统的sloppiness的原因可以从数学上进行分析。但是不同系统的sloppiniess具体原因仍然极具复杂性<ref name = "Panas"/>。
    
==Sloppy 理论与物理学==
 
==Sloppy 理论与物理学==