更改

删除4字节 、 2024年3月5日 (星期二)
无编辑摘要
第21行: 第21行:  
Sloppiness在生物学领域最为普遍,但在其它领域也并不缺席。从昆虫飞行模型,到原子间势,再到加速器设计,许多目前常用的模型都是sloppy的。例如,量子蒙特卡洛是求解原子和小分子的能量和量子行为的最精确的工具;然而,赛勒斯·乌姆里加(Cyrus Umrigar)在这种方法基础上建立的非常精确的变分波函数却是极度sloppy(b列)。
 
Sloppiness在生物学领域最为普遍,但在其它领域也并不缺席。从昆虫飞行模型,到原子间势,再到加速器设计,许多目前常用的模型都是sloppy的。例如,量子蒙特卡洛是求解原子和小分子的能量和量子行为的最精确的工具;然而,赛勒斯·乌姆里加(Cyrus Umrigar)在这种方法基础上建立的非常精确的变分波函数却是极度sloppy(b列)。
   −
即便参数值与真实值相差很大,有sloppy特性的模型也可以做出精确的预测。在数学中有一个经典的拟合难题<ref name = “Waterfall et.al, 2006”>[https://sethna.lassp.cornell.edu/pubPDF/Vandermonde.pdf ”Sloppy model universality class and the Vandermonde matrix"], Joshua J. Waterfall, Fergal P. Casey, Ryan N. Gutenkunst, Kevin S. Brown, Christopher R. Myers, Piet W. Brouwer, Veit Elser, and James P. Sethna, Phys. Rev. Letters '''97''', 150601 (2006), also selected for Virtual Journal of Biological Physics Research '''12 (8, Miscellaneous)''',(2006). </ref><ref name="Transtrum et.al, 2014">” Model reduction by manifold boundaries", Mark K. Transtrum, P. Qiu [https://doi.org/10.1103/PhysRevLett.113.098701 Phys. Rev. Lett. '''113''', 098701 (2014)]; pdf. </ref>:用指数衰变和去拟合放射性模型(c列和d列)得到的衰变常数与真实衰变常数截然不同,但短期内模型预测值与真实值却相差不大 。最后,用多项式系数模型<math>\sum_i a_it^i</math>拟合数据是sloppy的(h列)。但用正交多项式基<math>\sum_ib_iH_i</math>(<math>H_i</math>是一组正交多项式基)去拟合时得到的模型却往往是非sloppy的,这是因为从<math>t^i</math>到<math>H_i</math>的变换是高度非正交的<ref name="Transtrum et.al, 2014"/>。
+
即便参数值与真实值相差很大,有sloppy特性的模型也可以做出精确的预测。在数学中有一个经典的拟合难题<ref name = “Waterfall et.al, 2006”>[https://sethna.lassp.cornell.edu/pubPDF/Vandermonde.pdf "Sloppy model universality class and the Vandermonde matrix"], Joshua J. Waterfall, Fergal P. Casey, Ryan N. Gutenkunst, Kevin S. Brown, Christopher R. Myers, Piet W. Brouwer, Veit Elser, and James P. Sethna, Phys. Rev. Letters '''97''', 150601 (2006), also selected for Virtual Journal of Biological Physics Research '''12 (8, Miscellaneous)''',(2006). </ref><ref name="Transtrum et.al, 2014">” Model reduction by manifold boundaries", Mark K. Transtrum, P. Qiu [https://doi.org/10.1103/PhysRevLett.113.098701 Phys. Rev. Lett. '''113''', 098701 (2014)]; pdf. </ref>:用指数衰变和去拟合放射性模型(c列和d列)得到的衰变常数与真实衰变常数截然不同,但短期内模型预测值与真实值却相差不大 。最后,用多项式系数模型<math>\sum_i a_it^i</math>拟合数据是sloppy的(h列)。但用正交多项式基<math>\sum_ib_iH_i</math>(<math>H_i</math>是一组正交多项式基)去拟合时得到的模型却往往是非sloppy的,这是因为从<math>t^i</math>到<math>H_i</math>的变换是高度非正交的<ref name="Transtrum et.al, 2014"/>。
    
Sloppy模型有着多种形式,每个模型的sloppniess的原因并不完全相同,部分系统的sloppiness的原因可以从数学上进行分析。但是不同系统的sloppiniess具体原因仍然极具复杂性<ref> [https://arxiv.org/abs/1605.08705 Bridging Mechanistic and Phenomenological Models of Complex Biological Systems], Mark K. Transtrum and Peng Qiu, PLoS Comput Biol 12(5): e1004915. https://doi.org/10.1371/journal.pcbi.1004915</ref>。
 
Sloppy模型有着多种形式,每个模型的sloppniess的原因并不完全相同,部分系统的sloppiness的原因可以从数学上进行分析。但是不同系统的sloppiniess具体原因仍然极具复杂性<ref> [https://arxiv.org/abs/1605.08705 Bridging Mechanistic and Phenomenological Models of Complex Biological Systems], Mark K. Transtrum and Peng Qiu, PLoS Comput Biol 12(5): e1004915. https://doi.org/10.1371/journal.pcbi.1004915</ref>。
第29行: 第29行:     
事实上,理论物理学就像一棵树(下图)。高能物理学家研究树的枝条,寻找更接近树干的更统一的理论。在凝聚态物理学中则向外构建,寻找“涌现的”树枝和树叶——描述声音、半导体和超流体的有效理论。但两者有许多相似之处:扩散方程描述了在静止空气中香水如何从皮肤扩散到鼻子。这个方程通常写成连续极限的形式,使用的方法类似于描述凝聚态物理学中许多其他现象——声音、磁铁和超导体——的方法。而磁性的伊辛模型分形过程,通常使用类似于高能物理学中使用的重整化群进行分析。物理学家有一套系统的方法判断哪些参数是stiff(“僵硬”)的,哪些参数是sloppy(“欠定”)的,但是在其它领域中并没有相应的方法,使用sloppy理论的概念可以更准确有效地分析系统<ref>[http://arxiv.org/abs/1710.05787 Information geometry and the renormalization group], Archishman Raju, Benjamin B. Machta, James P. Sethna (submitted). </ref><ref>[http://arxiv.org/abs/1303.6738 Parameter Space Compression Underlies Emergent Theories and Predictive Models,] Benjamin B. Machta, Ricky Chachra, Mark K. Transtrum, James P. Sethna, [http://www.sciencemag.org/content/342/6158/604 Science'''342''' 604-607 (2013)].</ref><ref>[http://arxiv.org/pdf/1409.6203v2.pdf Information topology identifies emergent model classes], Transtrum M.K., Hart G., Qiu P. </ref><ref>[https://sethna.lassp.cornell.edu/pubPDF/vanderPol.pdf Structural susceptibility and separation of time scales in the van der Pol Oscillator], Ricky Chachra, Mark K. Transtrum, and James P. Sethna, [http://link.aps.org/doi/10.1103/PhysRevE.86.026712 Phys. Rev. E '''86''', 026712 (2012)]. </ref>
 
事实上,理论物理学就像一棵树(下图)。高能物理学家研究树的枝条,寻找更接近树干的更统一的理论。在凝聚态物理学中则向外构建,寻找“涌现的”树枝和树叶——描述声音、半导体和超流体的有效理论。但两者有许多相似之处:扩散方程描述了在静止空气中香水如何从皮肤扩散到鼻子。这个方程通常写成连续极限的形式,使用的方法类似于描述凝聚态物理学中许多其他现象——声音、磁铁和超导体——的方法。而磁性的伊辛模型分形过程,通常使用类似于高能物理学中使用的重整化群进行分析。物理学家有一套系统的方法判断哪些参数是stiff(“僵硬”)的,哪些参数是sloppy(“欠定”)的,但是在其它领域中并没有相应的方法,使用sloppy理论的概念可以更准确有效地分析系统<ref>[http://arxiv.org/abs/1710.05787 Information geometry and the renormalization group], Archishman Raju, Benjamin B. Machta, James P. Sethna (submitted). </ref><ref>[http://arxiv.org/abs/1303.6738 Parameter Space Compression Underlies Emergent Theories and Predictive Models,] Benjamin B. Machta, Ricky Chachra, Mark K. Transtrum, James P. Sethna, [http://www.sciencemag.org/content/342/6158/604 Science'''342''' 604-607 (2013)].</ref><ref>[http://arxiv.org/pdf/1409.6203v2.pdf Information topology identifies emergent model classes], Transtrum M.K., Hart G., Qiu P. </ref><ref>[https://sethna.lassp.cornell.edu/pubPDF/vanderPol.pdf Structural susceptibility and separation of time scales in the van der Pol Oscillator], Ricky Chachra, Mark K. Transtrum, and James P. Sethna, [http://link.aps.org/doi/10.1103/PhysRevE.86.026712 Phys. Rev. E '''86''', 026712 (2012)]. </ref>
,甚至物理学领域也在逐渐应用sloppy理论<ref name = “Quinn”>Model manifolds for probabilistic models: [http://arxiv.org/abs/1709.02000 Visualizing theory space: Isometric embedding of probabilistic predictions, from the Ising model to the cosmic microwave background], Katherine N. Quinn, Francesco De Bernardis, Michael D. Niemack, James P. Sethna (submitted). </ref><ref>[https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf ”Universally Sloppy Parameter Sensitivities in Systems Biology"], Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers, James P. Sethna, PLoS Comput Biol3(10) e189 (2007). ([http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030189 PLoS], [http://dx.doi.org/10.1371/journal.pcbi.0030189 doi:10.1371/journal.pcbi.0030189]). [Reviewed in [http://biomedicalcomputationreview.org/4/1/4.pdf NewsBytes] of [http://biomedicalcomputationreview.org/ Biomedical Computation Review] (Winter 07/08); rated "Exceptional" on Faculty of 1000]. </ref><ref name = “Casey et.al, 2007”>[http://arxiv.org/abs/q-bio.MN/0610024 "Optimal experimental design in an EGFR signaling and down-regulation model"], Fergal P. Casey, Dan Baird, Qiyu Feng, Ryan N. Gutenkunst, Joshua J. Waterfall, Christopher R. Myers, Kevin S. Brown, Richard A. Cerione, and James P. Sethna, IET Systems Biology 1, 190-202 (2007)</ref>。
+
,甚至物理学领域也在逐渐应用sloppy理论<ref name = “Quinn”>Model manifolds for probabilistic models: [http://arxiv.org/abs/1709.02000 Visualizing theory space: Isometric embedding of probabilistic predictions, from the Ising model to the cosmic microwave background], Katherine N. Quinn, Francesco De Bernardis, Michael D. Niemack, James P. Sethna (submitted). </ref><ref>[https://sethna.lassp.cornell.edu/pubPDF/SloppyEverywhere.pdf "Universally Sloppy Parameter Sensitivities in Systems Biology"], Ryan N. Gutenkunst, Joshua J. Waterfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers, James P. Sethna, PLoS Comput Biol3(10) e189 (2007). ([http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030189 PLoS], [http://dx.doi.org/10.1371/journal.pcbi.0030189 doi:10.1371/journal.pcbi.0030189]). [Reviewed in [http://biomedicalcomputationreview.org/4/1/4.pdf NewsBytes] of [http://biomedicalcomputationreview.org/ Biomedical Computation Review] (Winter 07/08); rated "Exceptional" on Faculty of 1000]. </ref><ref name = “Casey et.al, 2007”>[http://arxiv.org/abs/q-bio.MN/0610024 "Optimal experimental design in an EGFR signaling and down-regulation model"], Fergal P. Casey, Dan Baird, Qiyu Feng, Ryan N. Gutenkunst, Joshua J. Waterfall, Christopher R. Myers, Kevin S. Brown, Richard A. Cerione, and James P. Sethna, IET Systems Biology 1, 190-202 (2007)</ref>。
    
===Sloppy理论对实验的启示及应用===
 
===Sloppy理论对实验的启示及应用===