更改

删除5字节 、 2024年6月7日 (星期五)
第653行: 第653行:  
<math>
 
<math>
 
\begin{aligned}
 
\begin{aligned}
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx\\
+
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx\approx \int_{-\infty}^{\infty}\int_{\infty}^{\infty}p(x)p(y|x)\ln p(y|x)dydx\\
&\approx \int_{-\infty}^{\infty}\int_{\infty,\infty])}p(x)p(y|x)\ln p(y|x)dydx\\
+
&=\int_{-\infty}^{\infty}\int_{\infty}{\infty}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\
&=\int_{-\infty}^{\infty}\int_{\infty,\infty])}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\
   
&=\ln(\frac{L}{\sqrt{2\pi e}})
 
&=\ln(\frac{L}{\sqrt{2\pi e}})
 
\end{aligned}
 
\end{aligned}
786

个编辑