更改

删除39字节 、 2024年7月13日 (星期六)
第16行: 第16行:  
而G-emergence理论是Seth于2008年提出的最早对涌现进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性格兰杰因果来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,自回归模型存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰杰因果的方法来测量。
 
而G-emergence理论是Seth于2008年提出的最早对涌现进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性格兰杰因果来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,自回归模型存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰杰因果的方法来测量。
 
[[文件:G-emergence.png|G-emergence理论图|alt=G-emergence理论图|居中|546x546像素|缩略图]]
 
[[文件:G-emergence.png|G-emergence理论图|alt=G-emergence理论图|居中|546x546像素|缩略图]]
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。Seth提出的G-emergence理论首次尝试使用因果关系来量化涌现现象,然而,作者使用的因果关系是[[格兰杰因果关系|格兰杰因果]],这不是一个严格的因果关系,同时结果也取决于所使用的回归方法。此外,方法的度量指标是根据变量而不是动力学定义的,这意味着结果会依赖于变量的选择。
+
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。Seth提出的G-emergence理论首次尝试使用因果关系来量化涌现现象,然而,作者使用的因果关系是[[格兰杰因果关系|格兰杰因果]],这不是一个严格的因果关系,同时结果也取决于所使用的回归方法。此外,方法的度量指标是根据变量而不是动力学定义的,这意味着结果会依赖于变量的选择。
    
====其他定量刻画涌现的理论====
 
====其他定量刻画涌现的理论====
此外,也存在一些其他的涌现定量理论,主要有两种方法被广泛讨论。一种是从无序到有序的过程来理解[[涌现]],Moez Mnif和Christian meller-schloer<ref>Mnif, M.; Müller-Schloer, C. Quantitative emergence. In Organic Computing—A Paradigm Shift for Complex Systems; Springer: Basel, Switzerland, 2011; pp. 39–52. </ref>使用香农熵来度量有序和无序。在[[自组织]]过程中,当秩序增加时就会出现涌现,通过测量初始状态和最终状态之间的香农熵的差异来计算秩序的增加,然而该方法存在一些缺陷:依赖于抽象的观察水平以及系统初始条件的选择,为了克服这两种困难,作者提出了一种与最大熵分布相比的度量香农熵的相对水平的方法。受Moez mif和Christian meller-schloer工作的启发,参考文献<ref>Fisch, D.; Jänicke, M.; Sick, B.; Müller-Schloer, C. Quantitative emergence–A refined approach based on divergence measures. In Proceedings of the 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Budapest, Hungary, 27 September–1 October 2010; IEEE Computer Society: Washington, DC, USA, 2010; pp. 94–103. </ref>建议使用两个概率分布之间的散度能更好地量化涌现。他们将涌现理解为在所观察到的样本基础上的一种意想不到的或不可预测的分布变化。但该方法存在计算量大、估计精度低等缺点。为了解决这些问题,文献<ref>Fisch, D.; Fisch, D.; Jänicke, M.; Kalkowski, E.; Sick, B. Techniques for knowledge acquisition in dynamically changing environments. ACM Trans. Auton. Adapt. Syst. (TAAS) 2012, 7, 1–25. [CrossRef] </ref>进一步提出了一种使用高斯混合模型估计密度的近似方法,并引入马氏距离来表征数据与高斯分量之间的差异,从而得到了更好的结果。此外,Holzer和de Meer<ref>Holzer, R.; De Meer, H.; Bettstetter, C. On autonomy and emergence in self-organizing systems. In International Workshop on Self-Organizing Systems, Proceedings of the Third International Workshop, IWSOS 2008, Vienna, Austria, 10–12 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–169.</ref><ref>Holzer, R.; de Meer, H. Methods for approximations of quantitative measures in self-organizing systems. In Proceedings of the Self-Organizing Systems: 5th International Workshop, IWSOS 2011, Karlsruhe, Germany, 23–24 February 2011; Proceedings 5; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–15.</ref>等人提出了另一种基于Shannon熵的涌现测量方法。他们认为一个复杂的系统是一个自组织的过程,在这个过程中,不同的个体通过通信相互作用。然后,可以根据代理之间所有通信的香农熵度量与作为单独源的每次通信的香农熵总和之间的比率来测量涌现。另一种是从“整体大于部分之和”的角度来理解涌现<ref>Teo, Y.M.; Luong, B.L.; Szabo, C. Formalization of emergence in multi-agent systems. In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Montreal, QC, Canada, 19–22 May 2013; pp. 231–240. </ref><ref>Szabo, C.; Teo, Y.M. Formalization of weak emergence in multiagent systems. ACM Trans. Model. Comput. Simul. (TOMACS) 2015, 26, 1–25. [CrossRef] </ref>,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
+
此外,也存在一些其他的涌现定量理论,主要有两种方法被广泛讨论。一种是从无序到有序的过程来理解[[涌现]],Moez Mnif和Christian Müller-Schloer<ref>Mnif, M.; Müller-Schloer, C. Quantitative emergence. In Organic Computing—A Paradigm Shift for Complex Systems; Springer: Basel, Switzerland, 2011; pp. 39–52. </ref>使用香农熵来度量有序和无序。在[[自组织]]过程中,当秩序增加时就会出现涌现,通过测量初始状态和最终状态之间的香农熵的差异来计算秩序的增加,然而该方法存在一些缺陷:依赖于抽象的观察水平以及系统初始条件的选择,为了克服这两种困难,作者提出了一种与最大熵分布相比的度量香农熵的相对水平的方法。受Moez mif和Christian Müller-Schloer工作的启发,参考文献<ref>Fisch, D.; Jänicke, M.; Sick, B.; Müller-Schloer, C. Quantitative emergence–A refined approach based on divergence measures. In Proceedings of the 2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, Budapest, Hungary, 27 September–1 October 2010; IEEE Computer Society: Washington, DC, USA, 2010; pp. 94–103. </ref>建议使用两个概率分布之间的散度能更好地量化涌现。他们将涌现理解为在所观察到的样本基础上的一种意想不到的或不可预测的分布变化。但该方法存在计算量大、估计精度低等缺点。为了解决这些问题,文献<ref>Fisch, D.; Fisch, D.; Jänicke, M.; Kalkowski, E.; Sick, B. Techniques for knowledge acquisition in dynamically changing environments. ACM Trans. Auton. Adapt. Syst. (TAAS) 2012, 7, 1–25. [CrossRef] </ref>进一步提出了一种使用高斯混合模型估计密度的近似方法,并引入马氏距离来表征数据与高斯分量之间的差异,从而得到了更好的结果。此外,Holzer和de Meer<ref>Holzer, R.; De Meer, H.; Bettstetter, C. On autonomy and emergence in self-organizing systems. In International Workshop on Self-Organizing Systems, Proceedings of the Third International Workshop, IWSOS 2008, Vienna, Austria, 10–12 December 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–169.</ref><ref>Holzer, R.; de Meer, H. Methods for approximations of quantitative measures in self-organizing systems. In Proceedings of the Self-Organizing Systems: 5th International Workshop, IWSOS 2011, Karlsruhe, Germany, 23–24 February 2011; Proceedings 5; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–15.</ref>等人提出了另一种基于Shannon熵的涌现测量方法。他们认为一个复杂的系统是一个自组织的过程,在这个过程中,不同的个体通过通信相互作用。然后,可以根据代理之间所有通信的香农熵度量与作为单独源的每次通信的香农熵总和之间的比率来测量涌现。另一种是从“整体大于部分之和”的角度来理解涌现<ref>Teo, Y.M.; Luong, B.L.; Szabo, C. Formalization of emergence in multi-agent systems. In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Montreal, QC, Canada, 19–22 May 2013; pp. 231–240. </ref><ref>Szabo, C.; Teo, Y.M. Formalization of weak emergence in multiagent systems. ACM Trans. Model. Comput. Simul. (TOMACS) 2015, 26, 1–25. [CrossRef] </ref>,该方法定义来自交互规则和代理状态的涌现,而不是整个系统的总体统计度量。具体地说,这个度量由两个相互相减的项组成。第一项描述了整个系统的集体状态,而第二项代表了所有组成部分的单个状态的总和,该度量强调涌现产生于系统的相互作用和集体行为。
    
===因果及其度量===
 
===因果及其度量===
第30行: 第30行:     
===几种因果涌现理论===
 
===几种因果涌现理论===
近年来一些研究人员也提出一些定量刻画因果涌现的方法。对于如何定义因果涌现是一个关键问题,有三个代表性工作,分别是Hoel等<ref name=":0" /><ref name=":1" />提出的基于粗粒化的方法、Rosas等<ref name=":5">Rosas F E, Mediano P A, Jensen H J, et al. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data[J]. PLoS computational biology, 2020, 16(12): e1008289.</ref>提出的基于信息分解的方法以及张江等人[Dynamical Reversibility and A New Theory of Causal Emergence]基于奇异值分解提出了一套新的因果涌现理论。
+
近年来一些研究人员也提出一些定量刻画因果涌现的方法。对于如何定义因果涌现是一个关键问题,有三个代表性工作,分别是Hoel等<ref name=":0" /><ref name=":1" />提出的基于粗粒化的方法、Rosas等<ref name=":5">Rosas F E, Mediano P A, Jensen H J, et al. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data[J]. PLoS computational biology, 2020, 16(12): e1008289.</ref>提出的基于信息分解的方法以及张江等人<ref name=":2" />基于奇异值分解提出了一套新的因果涌现理论。
 
====Erik Hoel的因果涌现理论====
 
====Erik Hoel的因果涌现理论====
 
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,右图是对该理论框架的一个抽象,其中,横坐标表示时间尺度,纵坐标表示空间尺度。该框架可以看成是一个多层级的系统,存在微观和宏观两种状态。由于微观态往往具有很大的噪音,导致微观动力学的因果性比较弱,所以如果能对微观态进行合适的粗粒化得到噪音更小的宏观态,从而能使得宏观动力学的因果性更强。此外,因果涌现现象的发生意味着,当粗粒化微观状态时,从当前状态传递到下一状态的[[有效信息]]量会增加。[[文件:因果涌现理论抽象框架.png|因果涌现理论框架|alt=因果涌现理论抽象框架|居中|368x368像素|缩略图]]作者借鉴了整合信息的量化方法<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>,提出一种因果效应度量指标有效信息(<math> EI </math>)来量化一个马尔可夫动力学的因果性强弱,该指标反应一个特定的状态如何有效地影响系统的未来状态,是系统动力学的内禀属性。具体来说,使用干预操作对上一时刻的状态做干预,然后计算干预分布与在干预的情况下经过动力学的下一时刻分布两者之间的互信息作为因果效应的度量指标, <math> EI </math>的计算公式如下所示:
 
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,右图是对该理论框架的一个抽象,其中,横坐标表示时间尺度,纵坐标表示空间尺度。该框架可以看成是一个多层级的系统,存在微观和宏观两种状态。由于微观态往往具有很大的噪音,导致微观动力学的因果性比较弱,所以如果能对微观态进行合适的粗粒化得到噪音更小的宏观态,从而能使得宏观动力学的因果性更强。此外,因果涌现现象的发生意味着,当粗粒化微观状态时,从当前状态传递到下一状态的[[有效信息]]量会增加。[[文件:因果涌现理论抽象框架.png|因果涌现理论框架|alt=因果涌现理论抽象框架|居中|368x368像素|缩略图]]作者借鉴了整合信息的量化方法<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>,提出一种因果效应度量指标有效信息(<math> EI </math>)来量化一个马尔可夫动力学的因果性强弱,该指标反应一个特定的状态如何有效地影响系统的未来状态,是系统动力学的内禀属性。具体来说,使用干预操作对上一时刻的状态做干预,然后计算干预分布与在干预的情况下经过动力学的下一时刻分布两者之间的互信息作为因果效应的度量指标, <math> EI </math>的计算公式如下所示:
150

个编辑