更改

添加3字节 、 2024年7月13日 (星期六)
第150行: 第150行:     
====基于互信息的近似方法====
 
====基于互信息的近似方法====
由于基于互信息的近似方法需要依赖宏观态<math>V</math>的选择,因此,作者给出了两种方法,一种是给定一个宏观态<math>V</math>计算,另一种是基于机器学习的方法学习观态<math>V</math>以及最大化<math>\mathrm{\Psi} </math>。下面我们分别介绍这两种方法:
+
由于基于互信息的近似方法需要依赖宏观态<math>V</math>的选择,因此,作者给出了两种方法,一种是给定一个宏观态<math>V</math>计算,另一种是基于机器学习的方法学习宏观态<math>V</math>以及最大化<math>\mathrm{\Psi} </math>。下面我们分别介绍这两种方法:
    
Rosas虽然给出因果涌现的严格定义,但在<math>\varphi ID </math>中使用的数学公式很复杂,同时计算要求很高,难以将该方法应用于实际系统。因此,Rosas等绕开特有信息和协同信息的计算<ref name=":5" />,提出一个判定因果涌现发生的充分条件,基于[[互信息]]提出三个新指标,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>用于识别系统中的因果涌现,三种指标的具体计算公式如下所示:
 
Rosas虽然给出因果涌现的严格定义,但在<math>\varphi ID </math>中使用的数学公式很复杂,同时计算要求很高,难以将该方法应用于实际系统。因此,Rosas等绕开特有信息和协同信息的计算<ref name=":5" />,提出一个判定因果涌现发生的充分条件,基于[[互信息]]提出三个新指标,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>用于识别系统中的因果涌现,三种指标的具体计算公式如下所示:
150

个编辑