更改

添加21字节 、 2024年7月16日 (星期二)
改进NIS框架简介图
第43行: 第43行:  
<math>\max_{\phi_q,\hat{f}_{\phi_q},\phi_q^†,q} \mathcal{I}(\hat{f}_{\phi_q})</math>
 
<math>\max_{\phi_q,\hat{f}_{\phi_q},\phi_q^†,q} \mathcal{I}(\hat{f}_{\phi_q})</math>
   −
其中[math]\displaystyle{ \mathcal{I} }[/math]是有效信息的度量(可以是EI、Eff 或NIS主要使用的维度平均 EI,即dEI)。[math]\displaystyle{ \phi_q }[/math]是一种有效的粗粒化策略,[math]\displaystyle{ \hat{f}_{\phi_q} }[/math]是一种有效的宏观动力学。
+
<nowiki>其中[math]\displaystyle{ \mathcal{I} }[/math]是有效信息的度量(可以是EI、Eff 或NIS主要使用的维度平均 EI,即dEI)。[math]\displaystyle{ \phi_q }[/math]是一种有效的粗粒化策略,[math]\displaystyle{ \hat{f}_{\phi_q}}[/math]是一种有效的宏观动力学。</nowiki>
    
该定义符合近似因果模型的抽象。
 
该定义符合近似因果模型的抽象。
   −
==神经网络框架 ==
+
==神经网络框架==
[[文件:NIS简介.png||居中|400px|NIS框架简介]]
+
[[文件:NIS Graph New.png||居中|600px|NIS框架简介]]
      第176行: 第176行:     
=NIS的理论性质=
 
=NIS的理论性质=
==压缩信道理论==
+
==压缩信道理论 ==
 
[[文件:NIS Fig 3.png|居中|600px|'''图3.''' 神经信息压缩器压缩信道的图形模型。]]
 
[[文件:NIS Fig 3.png|居中|600px|'''图3.''' 神经信息压缩器压缩信道的图形模型。]]
 
NIS框架(图 1)可以看作图 3 所示的信道,由于投影操作的存在,通道在中间被压缩。此为压缩信息通道。
 
NIS框架(图 1)可以看作图 3 所示的信道,由于投影操作的存在,通道在中间被压缩。此为压缩信息通道。
第290行: 第290行:  
将学习到的宏观动力学可视化(图 6c)。 <math>y_t < 0</math> 时宏观动力学是一个线性映射,<math>y_t > 0</math> 时它可被视为一个常数。因此,该动力学可以保证所有前七个微状态都可以与最后一个状态分离。图6d验证了定理2。
 
将学习到的宏观动力学可视化(图 6c)。 <math>y_t < 0</math> 时宏观动力学是一个线性映射,<math>y_t > 0</math> 时它可被视为一个常数。因此,该动力学可以保证所有前七个微状态都可以与最后一个状态分离。图6d验证了定理2。
   −
==简单布尔网络==
+
==简单布尔网络 ==
 
[[文件:NIS Fig 7.png|居中|600px|'''图7.''' 布尔网络样例(左)及其原理(右)。]]
 
[[文件:NIS Fig 7.png|居中|600px|'''图7.''' 布尔网络样例(左)及其原理(右)。]]
 
布尔网络是离散动力系统的典型例子,其中每个节点有两种可能的状态(0 或 1),且节点状态受其相邻节点状态的影响。该网络的微观机制如下:图 7 展示了一个包含四个节点的布尔网络示例,每个节点的状态受到其相邻节点状态组合的概率影响,具体概率见图 7 中的表格。将所有节点的机制结合后,可以得到一个具有 <math>2^4 = 16</math> 个状态的大型马尔可夫转移矩阵。
 
布尔网络是离散动力系统的典型例子,其中每个节点有两种可能的状态(0 或 1),且节点状态受其相邻节点状态的影响。该网络的微观机制如下:图 7 展示了一个包含四个节点的布尔网络示例,每个节点的状态受到其相邻节点状态组合的概率影响,具体概率见图 7 中的表格。将所有节点的机制结合后,可以得到一个具有 <math>2^4 = 16</math> 个状态的大型马尔可夫转移矩阵。
68

个编辑