更改

添加3字节 、 2024年7月28日 (星期日)
第1行: 第1行:  
'''NIS+(Neural Information Squeezer Plus)'''是一个机器学习框架,可学习宏观动力学,并量化因果涌现的程度。该框架通过最大化有效信息,得到一个宏观动态模型。研究者通过在模拟数据和实际数据上的实验,证明了该框架的有效性。且该框架在不同测试环境里表现出更强的泛化能力。
 
'''NIS+(Neural Information Squeezer Plus)'''是一个机器学习框架,可学习宏观动力学,并量化因果涌现的程度。该框架通过最大化有效信息,得到一个宏观动态模型。研究者通过在模拟数据和实际数据上的实验,证明了该框架的有效性。且该框架在不同测试环境里表现出更强的泛化能力。
   −
= 问题背景 =
+
= 问题与背景 =
 
在自然界和人类社会中,存在着许多由无数相互作用的元素构成的复杂系统,如气候系统、生态系统、鸟群、蚁群、细胞和大脑等。这些系统展现出丰富的非线性动力学行为,如果我们仅关注微观的尺度,会发现它们的行为非常复杂且难以预测。当我们从更宏观的尺度观察这些系统时,可以用更加简洁的规律来解释和预测这些系统,这便是复杂系统独有的涌现现象。
 
在自然界和人类社会中,存在着许多由无数相互作用的元素构成的复杂系统,如气候系统、生态系统、鸟群、蚁群、细胞和大脑等。这些系统展现出丰富的非线性动力学行为,如果我们仅关注微观的尺度,会发现它们的行为非常复杂且难以预测。当我们从更宏观的尺度观察这些系统时,可以用更加简洁的规律来解释和预测这些系统,这便是复杂系统独有的涌现现象。
  
272

个编辑