更改

删除332字节 、 2024年8月4日 (星期日)
第180行: 第180行:  
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
 
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
   −
<math>\mathrm{\Psi}>0 </math>时,宏观状态会发生涌现,但是当<math>\mathrm{\Psi}<0 </math>,我们不能确定<math>V </math>是否发生涌现。  
+
<math>X_t^j </math>表示第 j 维t时刻的微观变量,<math>V_t ; V_{t+1} </math>代表两个连续时间的宏观状态变量,当<math>\mathrm{\Psi}>0 </math>时,宏观状态会发生涌现,但是当<math>\mathrm{\Psi}<0 </math>,我们不能确定<math>V </math>是否发生涌现。  
    
<math>\Delta_{t, t+1}(V):=\max _j\left(I\left(V_t ; X_{t+1}^j\right)-\sum_i I\left(X_t^i ; X_{t+1}^j\right)\right) </math>
 
<math>\Delta_{t, t+1}(V):=\max _j\left(I\left(V_t ; X_{t+1}^j\right)-\sum_i I\left(X_t^i ; X_{t+1}^j\right)\right) </math>
   −
<math>X_t^j </math>表示第 j 维t时刻的微观变量,<math>V_t ; V_{t+1} </math>代表两个连续时间的宏观状态变量,当<math>\mathrm{\Delta}>0 </math>时,宏观状态<math>V </math>发生向下因果。
+
<math>\mathrm{\Delta}>0 </math>时,宏观状态<math>V </math>发生向下因果。
    
<math>\Gamma_{t, t+1}(V):=\max _j I\left(V_t ; X_{t+1}^j\right) </math>
 
<math>\Gamma_{t, t+1}(V):=\max _j I\left(V_t ; X_{t+1}^j\right) </math>
第193行: 第193行:  
<math>Un(V_t;X_{t+1}|X_t)  ≥ I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) + Red(V_t, V_{t+1};X_t) </math>
 
<math>Un(V_t;X_{t+1}|X_t)  ≥ I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) + Red(V_t, V_{t+1};X_t) </math>
   −
式中,<math>X_t^j </math>表示第 j 维t时刻的微观变量,<math>V_t ; V_{t+1} </math>代表两个连续时间的宏观状态变量。
+
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以可以提出一个充分非必要条件<math>\Psi_{t, t+1}(V) </math>。当<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。
 
  −
由于<math>Red(V_t, V_{t+1};X_t) </math>为非负数,所以可以提出一个充分非必要条件<math>\Psi_{t, t+1}(V) </math>
  −
<math>\Psi_{t, t+1}(V) > 0 </math>,系统发生因果涌现。但当<math>\mathrm{\Psi}<0 </math>,我们不能确定系统是否发生因果涌现。
  −
<math>\Psi_{t, t+1}(V):=I\left(V_t ; V_{t+1}\right)-\sum_j I\left(X_t^j ; V_{t+1}\right) </math>
      
该方法因为是基于格兰杰因果,所以计算比较方便,且对系统的动力学没有马尔可夫性的假设和要求,同时该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法提出的三个指标 ,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要,同时该方法需要手动给定粗粒化策略和宏观变量,而不同的选择会对结果造成显著影响;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高,由于<math>\Psi </math>作为近似条件,高维系统中误差非常大,很容易得到负值,从而无法判断是否有因果涌现发生。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
 
该方法因为是基于格兰杰因果,所以计算比较方便,且对系统的动力学没有马尔可夫性的假设和要求,同时该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法提出的三个指标 ,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要,同时该方法需要手动给定粗粒化策略和宏观变量,而不同的选择会对结果造成显著影响;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高,由于<math>\Psi </math>作为近似条件,高维系统中误差非常大,很容易得到负值,从而无法判断是否有因果涌现发生。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
1,884

个编辑