更改

添加30字节 、 2024年8月22日 (星期四)
第289行: 第289行:     
整个优化框架如下图所示:
 
整个优化框架如下图所示:
 
+
[[文件:NIS_Optimization.png|替代=NIS优化框架|居中|400x400像素|NIS优化框架]]
[[文件:NIS Optimization.png|NIS的优化框架]]
      
这一优化问题的目标函数为EI,它是函数[math]\phi,\hat{f}_q,\phi^{\dagger}[/math]的泛函(这里宏观维度[math]q[/math]是超参),因此较难优化,我们需要使用机器学习的方法来尝试解决。
 
这一优化问题的目标函数为EI,它是函数[math]\phi,\hat{f}_q,\phi^{\dagger}[/math]的泛函(这里宏观维度[math]q[/math]是超参),因此较难优化,我们需要使用机器学习的方法来尝试解决。
第297行: 第296行:     
为了识别系统中的因果涌现,作者提出一种[[神经信息压缩器]](Neural Information Squeezer,NIS)方法<ref name="NIS" />,该构建了一种编码器-动力学学习器-解码器框架,即模型由三个部分构成分别用于对原始数据进行粗粒化得到宏观态、拟合宏观动力学和反粗粒化运算(将宏观态配合随机噪声解码为微观态)。其中,作者们用[[可逆神经网络]](INN)构建编码器(Encoder)和解码器(Decoder)。该模型框架可以看成是一个神经信息压缩器,将包含噪音的微观态压缩成宏观态,丢弃无用的信息,从而使得宏观动力学的因果性更强。NIS方法的模型框架如下图所示:
 
为了识别系统中的因果涌现,作者提出一种[[神经信息压缩器]](Neural Information Squeezer,NIS)方法<ref name="NIS" />,该构建了一种编码器-动力学学习器-解码器框架,即模型由三个部分构成分别用于对原始数据进行粗粒化得到宏观态、拟合宏观动力学和反粗粒化运算(将宏观态配合随机噪声解码为微观态)。其中,作者们用[[可逆神经网络]](INN)构建编码器(Encoder)和解码器(Decoder)。该模型框架可以看成是一个神经信息压缩器,将包含噪音的微观态压缩成宏观态,丢弃无用的信息,从而使得宏观动力学的因果性更强。NIS方法的模型框架如下图所示:
[[文件:NIS模型框架图.png|居中|500x500像素|替代=NIS模型框架图|NIS模型框架图|缩略图]]
+
[[文件:NIS模型框架图.png|居中|500x500像素|替代=NIS模型框架图|NIS模型框架图]]
    
然而由于该目标函数是一个[[泛函优化]]问题,往往很难优化。为了解决这个问题,作者将优化过程分为两个阶段,第一个阶段表示在给定宏观尺度<math>q </math>的情况下<math>\min _{\phi_q, \hat{f}_q, \phi_q^{\dagger}}\left\|\phi_q^{\dagger}(Y(t+1))-X_{t+1}\right\|<\epsilon </math>,第二阶段将复杂的函数优化问题转换成线性搜索不同的<math>q </math>,使得找到有效信息最大的宏观尺度<math>\mathop{max}\limits_{q}EI(\hat{f}_{\phi_q}^\ast) </math> 。
 
然而由于该目标函数是一个[[泛函优化]]问题,往往很难优化。为了解决这个问题,作者将优化过程分为两个阶段,第一个阶段表示在给定宏观尺度<math>q </math>的情况下<math>\min _{\phi_q, \hat{f}_q, \phi_q^{\dagger}}\left\|\phi_q^{\dagger}(Y(t+1))-X_{t+1}\right\|<\epsilon </math>,第二阶段将复杂的函数优化问题转换成线性搜索不同的<math>q </math>,使得找到有效信息最大的宏观尺度<math>\mathop{max}\limits_{q}EI(\hat{f}_{\phi_q}^\ast) </math> 。
642

个编辑