打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
NIS
(查看源代码)
2024年8月31日 (六) 21:46的版本
添加30字节
、
2024年8月31日 (星期六)
→微观态
第80行:
第80行:
===微观态===
===微观态===
−
动力系统状态(式{{EquationNote|1}})<math>\mathbf{x}_t</math>
的每一个样本称为时间步长
<math>t</math> 的一个微观状态。以相等间隔和有限时间步长 T 采样的多变量时间序列 <math>\mathbf{x}_1,\mathbf{x}_2,···,\mathbf{x}_T</math> 可形成微观状态时间序列。
+
动力系统状态(式{{EquationNote|1}})<math>\mathbf{x}_t</math>
的每一个样本称为时间步
<math>t</math> 的一个微观状态。以相等间隔和有限时间步长 T 采样的多变量时间序列 <math>\mathbf{x}_1,\mathbf{x}_2,···,\mathbf{x}_T</math> 可形成微观状态时间序列。
−
如果我们需要以数据驱动的方式重构微观动力学<math>g</math>,则需要大量可观测的微观状态时间序列[math]\mathbf{x}_t[/math]
,但在噪声较强时,我们很难从微观状态中重建具有强因果关系的信息丰富的动力学。因果涌现的基本思想是,若忽略微观状态数据中的部分信息并将其转换为宏观状态时间序列,则可以重建一个具有更强因果关系的能描述系统演化的宏观动力学。信息丢弃过程即为粗粒化策略(或映射方法)。
+
如果我们需要以数据驱动的方式重构微观动力学<math>g</math>,则需要大量可观测的微观状态时间序列[math]\mathbf{x}_t[/math]
,但在噪声较强时,我们很难从微观状态中重建具有强因果特性的信息丰富的动力学。因果涌现的基本思想是,若忽略微观状态数据中的部分信息并将其转换为宏观状态时间序列,则可以重建一个具有更强因果关系的能描述系统演化的宏观动力学。这个从微观态到宏观态的信息转化过程即为粗粒化策略(或映射方法)。
===<math>q</math> 维粗粒化策略===
===<math>q</math> 维粗粒化策略===
Jake
786
个编辑