第8行: |
第8行: |
| === 自然和社会现象 === | | === 自然和社会现象 === |
| | | |
− | 蚁群、鸟群、木星大红斑
| + | 最吸引人的和使人迷惑的自然模式是那些在高度结构化的联合行为随着时间涌现于简单子系统的交互。鸟群以步调一致地形式飞行,鱼儿在没有领头带领以连贯的序列群组流转并突然共同转向的方式游动。蚊群形成复杂的社会,生存继承自特异化的社会分工,不是由中心领导所带领。几个世纪前,木星大气中五彩斑斓的混沌运动形成了被称之为“大红斑”的巨大漩涡,至少已存在200到350年,期间会逐步改变颜色和形状。出现在经济系统中商品价格优化从主体服从本地商业规则中浮现。甚至在明显复杂系统处理玩家关键角色涌现全局信息。比如说,人类对场景中一小块颜色的感知,会依赖于整个场景的颜色成份,不仅仅在于对空间局部视网膜检测器对频谱的反应。类似地,外形的感知可以由全局拓扑属性被增强,比如曲线是开放还是封闭。 |
| + | |
| + | 全局坐标如何在这些过程中涌现?普通的机制能引导多样现象的涌现吗?同时代的科学和数学能提供什么语言去精确地描绘这些系统中涌现的不同组织? |
| + | |
| + | 涌现通常被理解为一个引导结构出现的过程,该过程不能直接由定义约束和控制系统的即刻作用力所描述。随着时间的推移“一些新东西”在某尺度出现,且不能由运动的等式所说明。一个涌现的属性也不能明确由初始和边界条件所表征。简而言之,当下层系统释放一些效应到它的创建中则一个属性涌现。 |
| + | |
| + | 这些观察构成直观的涌现定义。为了让它更可用,无论如何,得有人说明“那些东西”是什么,并且它“新”在哪里。否则,表述就很少,甚至没内容,因为几乎所有时间相关系统将展现涌现属性。 |
| | | |
| === 古典计算模型 === | | === 古典计算模型 === |