更改

添加6字节 、 2024年9月11日 (星期三)
第215行: 第215行:     
==混沌动力学实例==
 
==混沌动力学实例==
接下来将采用具体的方法来演示如何将计算力学的理论付诸实践。要演示的是混沌动力学中的逻辑斯谛映射(logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,当它以吸引子上的初始条件启动时,可以让观察到的过程是平稳的。轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测来研究迭代函数<math>\mathcal{P} </math>中的信息处理。
+
接下来将采用具体的方法来演示如何将计算力学的理论付诸实践。要演示的是混沌动力学中的逻辑斯谛映射(logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,当它以吸引子上的初始条件启动时,可以让观察到的过程是平稳的。轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
    
==参考文献==
 
==参考文献==
275

个编辑