更改

删除3字节 、 2024年9月15日 (星期日)
第146行: 第146行:  
在计算力学中,宇宙被视为一个确定性动力系统(DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。由于系统内的智能体(Agent)的计算资源有限,无法测量和预测其内外部环境的所有行为,这些不能预测的部分对智能体来说就相当于是随机扰动,所以智能体被视为一个随机动力系统(SDS)。智能体试图构建和维持一个对其环境具有最大预测能力的内部模型,以提高其自身对环境的适应性和生存能力。
 
在计算力学中,宇宙被视为一个确定性动力系统(DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。由于系统内的智能体(Agent)的计算资源有限,无法测量和预测其内外部环境的所有行为,这些不能预测的部分对智能体来说就相当于是随机扰动,所以智能体被视为一个随机动力系统(SDS)。智能体试图构建和维持一个对其环境具有最大预测能力的内部模型,以提高其自身对环境的适应性和生存能力。
   −
智能体对外部环境的测量精度一般都是有限的,测量结果只能描述外部环境的“模糊状态”,智能体需要对测量结果粗粒化后才能识别“模糊状态”中的模式。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} s_t</math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
+
智能体对外部环境的测量精度一般都是有限的,测量结果只能描述外部环境的“模糊状态”,智能体需要对测量结果粗粒化后才能识别“模糊状态”中的模式。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
    
按照一定的划分方法( partition)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\overleftarrow{S}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列粗粒化后得到的宏观态。
 
按照一定的划分方法( partition)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\overleftarrow{S}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列粗粒化后得到的宏观态。
275

个编辑