第33行: |
第33行: |
| | | |
| === '''进化的系统模型''' === | | === '''进化的系统模型''' === |
− | 可以用生物进化的思想来阐述内在涌现的问题,解释一个高度有序系统是怎么从混沌中涌现的,但是它在解释生命形式的多样性方面预测能力有限。因此要将系统限制在一个结构和生物特征明确的原型宇宙,并把它简化为包括一个环境和一组适应性的观察者或“智能体”。这样才能清晰地定义智能体的性质。智能体(Agent)试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合,可以视为一个随机动力系统(Stochastic Dynamical Systems,简称SDS)。在任何给定的时刻,智能体感知到的是当前环境状态的投影。也就是说,环境状态被智能体的感官装置(传感器)所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基层)来构建内部环境模型。基于环境模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。如果智能体可以将测量结果尽可能划分随机和确定的部分,然后尽可能捕捉确定的规律,智能体就能利用环境中的更多规律,这种优势会提高智能体的生存能力。
| + | 我们可以用生物进化的思想来阐述内在涌现的问题,解释一个高度有序系统是怎么从混沌中涌现的,但是它在解释生命形式的多样性方面预测能力有限。因此要将系统限制在一个结构和生物特征明确的原型宇宙,并把它简化为包括一个环境和一组适应性的观察者或“智能体”。这样才能清晰地定义智能体的性质。智能体(Agent)试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合,可以视为一个随机动力系统(Stochastic Dynamical Systems,简称SDS)。在任何给定的时刻,智能体感知到的是当前环境状态的投影。也就是说,环境状态被智能体的感官装置(传感器)所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基层)来构建内部环境模型。基于环境模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。如果智能体可以将测量结果尽可能划分随机和确定的部分,然后尽可能捕捉确定的规律,智能体就能利用环境中的更多规律,这种优势会提高智能体的生存能力。 |
| [[文件:宇宙模型示意图.jpg|居中|无框|600x600像素]] | | [[文件:宇宙模型示意图.jpg|居中|无框|600x600像素]] |
| | | |
| | | |
| | | |
− | 上图为以智能体为中心的环境视图:宇宙可以被视为一个确定性动力系统(Deterministic Dynamical Systems,简称DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。每个智能体所看到的环境是一个由所有其他智能体组成的随机动力系统(SDS)。其表观随机性源于是内在的随机性和有限的计算资源。每个智能体本身也是一个随机动力系统,因为它可能会从其基层和环境刺激中采样或受到无法控制的随机性困扰。基层代表支持和限制信息处理、模型构建和决策的可用资源。箭头表示信息流入和流出智能体的方向。 | + | 上图为以智能体为中心的环境视图:宇宙可以被视为一个确定性动力系统(Deterministic Dynamical Systems,简称DS),即使规则和初始条件是确定的,随着规模的增长,系统也会变得极为复杂。每个智能体所看到的环境是一个由所有其他智能体组成的随机动力系统(SDS)。其随机性源于其内在的随机性和有限的计算资源。每个智能体本身也是一个随机动力系统,因为它可能会从其基层和环境刺激中采样或受到无法控制的随机性困扰。基层代表支持和限制信息处理、模型构建和决策的可用资源。箭头表示信息流入和流出智能体的方向。 |
| | | |
− | 智能体面临的基本问题是基于对隐藏环境状态的建模和选择可能的行动来预测未来的感官输入。设计这样一个原型宇宙的人面临的问题是如何判断智能体是否已适应环境及其适应方式。这需要一个量化的理论来描述智能体如何处理信息和构建模型。
| + | 智能体面临的基本问题是基于对隐藏环境状态的建模和对未来环境的预测。这需要一个量化的理论来描述智能体如何处理信息和构建模型。 |
| | | |
| == 模型的量化指标 == | | == 模型的量化指标 == |
第141行: |
第141行: |
| 上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。 | | 上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。 |
| | | |
− | === 统计复杂度与香农熵率的关系 === | + | === 统计复杂度-熵率图 === |
| [[文件:复杂度-熵率图.jpg|居中|无框|600x600像素]] | | [[文件:复杂度-熵率图.jpg|居中|无框|600x600像素]] |
| 上图(a)为逻辑斯谛映射中统计复杂度<math>C_μ </math>与香农熵率<math>H(L)/L </math>的关系,三角形表示<math>(C_μ ,H(L)/L) </math>的大概位置,对应非线性参数<math>r</math>的 193 个取值,其中子序列长度<math>L=16 </math>,覆盖部分实验数据的粗实线是<math>C_μ =0 </math>时对<math>H(L)/L </math>得出的分析曲线。本图表现两个重要特征。第一个特征是熵的极值导致零复杂度,也就是说在<math>H(L)/L=0 </math>处最简单的周期过程和在<math>H(L)/L=1 </math>处最随机的过程在统计上都是简单的,它们都具有零复杂度,因为它们是由具有单一状态的斑图重构机器描述的。第二个特征是在两个极端情况之间,过程明显更为复杂,在临界熵值<math>H_c </math>附近出现明显峰值(此处<math>r=3.5699...</math>),小于<math>H_c </math>数据集在呈周期性(包括在混沌区域也呈周期性的参数)的参数下产生,大于<math>H_c </math>数据集在呈混沌的参数下产生。本图可以对照统计复杂度小节中的图(b)理解。 | | 上图(a)为逻辑斯谛映射中统计复杂度<math>C_μ </math>与香农熵率<math>H(L)/L </math>的关系,三角形表示<math>(C_μ ,H(L)/L) </math>的大概位置,对应非线性参数<math>r</math>的 193 个取值,其中子序列长度<math>L=16 </math>,覆盖部分实验数据的粗实线是<math>C_μ =0 </math>时对<math>H(L)/L </math>得出的分析曲线。本图表现两个重要特征。第一个特征是熵的极值导致零复杂度,也就是说在<math>H(L)/L=0 </math>处最简单的周期过程和在<math>H(L)/L=1 </math>处最随机的过程在统计上都是简单的,它们都具有零复杂度,因为它们是由具有单一状态的斑图重构机器描述的。第二个特征是在两个极端情况之间,过程明显更为复杂,在临界熵值<math>H_c </math>附近出现明显峰值(此处<math>r=3.5699...</math>),小于<math>H_c </math>数据集在呈周期性(包括在混沌区域也呈周期性的参数)的参数下产生,大于<math>H_c </math>数据集在呈混沌的参数下产生。本图可以对照统计复杂度小节中的图(b)理解。 |