更改

删除15字节 、 2024年10月20日 (星期日)
第605行: 第605行:  
针对任意的状态硬划分,我们可以定义所谓的可聚类性(lumpability)的概念。可聚类性(Lumpability)是一种对聚类的衡量,这个概念最早出现在Kemeny, Snell在1969年的有限马尔科夫链(Finite Markov Chains)<ref name=":33">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。可聚类性(Lumpability)就是一个数学条件,用来判断“对于某一种硬分块的微观状态分组方案,是否对微观状态转移矩阵是可约简的”。不管状态空间按照哪一个硬分块方案做分类,它都有对应后续的对转移矩阵和概率空间的粗粒化方案<ref>Buchholz, Peter. "Exact and ordinary lumpability in finite Markov chains." ''Journal of applied probability'' 31.1 (1994): 59-75.</ref>。接下来,我们给出正式的定义。
 
针对任意的状态硬划分,我们可以定义所谓的可聚类性(lumpability)的概念。可聚类性(Lumpability)是一种对聚类的衡量,这个概念最早出现在Kemeny, Snell在1969年的有限马尔科夫链(Finite Markov Chains)<ref name=":33">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。可聚类性(Lumpability)就是一个数学条件,用来判断“对于某一种硬分块的微观状态分组方案,是否对微观状态转移矩阵是可约简的”。不管状态空间按照哪一个硬分块方案做分类,它都有对应后续的对转移矩阵和概率空间的粗粒化方案<ref>Buchholz, Peter. "Exact and ordinary lumpability in finite Markov chains." ''Journal of applied probability'' 31.1 (1994): 59-75.</ref>。接下来,我们给出正式的定义。
   −
对给定分组方法'''<math>A=\{A_1, A_2, ... ,A_r\}</math>''' ,这里[math]A_i[/math]是状态空间A的任意一个子集,且满足:[math]A_i\intersection A_j\neq \Phi[/math],这里[math]\Phi[/math]表示空集。则可聚类的充分必要条件为:
+
对给定分组方法'''<math>A=\{A_1, A_2, ... ,A_r\}</math>''' ,这里[math]A_i[/math]是状态空间A的任意一个子集,且满足:[math]A_i\cap A_j\neq \Phi[/math][math]\Phi[/math]表示空集。则可聚类的充分必要条件为:
    
设<math>p_{s_k \rightarrow s_m} = p(s^{(t)} = s_m | s^{(t-1)} = s_k)</math>,<math>p_{s_k \rightarrow A_i} = p(s^{(t)} \in A_i | s^{(t-1)} = s_k)</math>
 
设<math>p_{s_k \rightarrow s_m} = p(s^{(t)} = s_m | s^{(t-1)} = s_k)</math>,<math>p_{s_k \rightarrow A_i} = p(s^{(t)} \in A_i | s^{(t-1)} = s_k)</math>
786

个编辑