更改

添加9字节 、 2024年10月29日 (星期二)
第132行: 第132行:  
在文献<ref name=":0"/>中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵([math]f_m[/math])的例子,如下面左图所示。其中前7个状态之间等概率转移,最后一个状态是独立的,只能转变为自身的状态。
 
在文献<ref name=":0"/>中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵([math]f_m[/math])的例子,如下面左图所示。其中前7个状态之间等概率转移,最后一个状态是独立的,只能转变为自身的状态。
   −
对该矩阵的粗粒化为如下操作:首先,将前7个状态归并为一个宏观状态,不妨称为A,并且将[math]f_m[/math]中前7行的前7列的概率数值加总得到A到A状态转移的概率,并对[math]f_m[/math]矩阵的其它数值保持不变。这样归并后的新的概率转移矩阵如右图所示,记为[math]f_M[/math]。这是一个确定的宏观马尔科夫转移矩阵,即系统的未来状态完全可以由当前状态决定。此时<math>EI(f_M\ )>EI(f_m\ ) </math>,系统发生了因果涌现。
+
对该矩阵的粗粒化为如下操作:首先,将前7个状态归并为一个宏观状态,不妨称为A,并且将[math]f_m[/math]中前7行的前7列的概率数值加总得到宏观态A到A状态转移的概率,并对[math]f_m[/math]矩阵的其它数值保持不变。这样归并后的新的概率转移矩阵如右图所示,记为[math]f_M[/math]。这是一个确定的宏观马尔科夫转移矩阵,即系统的未来状态完全可以由当前状态决定。此时<math>EI(f_M\ )>EI(f_m\ ) </math>,系统发生了因果涌现。
    
[[文件:状态空间中的因果涌现1.png|居左|500x500像素|状态空间上的因果涌现|替代=]]
 
[[文件:状态空间中的因果涌现1.png|居左|500x500像素|状态空间上的因果涌现|替代=]]
786

个编辑