更改

无编辑摘要
第18行: 第18行:  
  </math>}}
 
  </math>}}
   −
其中 <math>P_{(X,Y)></math> 是 <math>X</math> 和 <math>Y</math> 的 联合概率 ''mass'' 函数,并且<math>P_X</math> 和 <math>P_Y</math> 分别是 <math>X</math> 和 <math>Y</math> 的 边际概率 质量函数。
+
其中 <math>P_{(X,Y)}</math> 是 <math>X</math> 和 <math>Y</math> 的 联合概率 ''mass'' 函数,并且<math>P_X</math> 和 <math>P_Y</math> 分别是 <math>X</math> 和 <math>Y</math> 的 边际概率 质量函数。
 
==== 部分信息分解 ====
 
==== 部分信息分解 ====
 
在信息熵与互信息的基础上,部分信息分解(Partial Information Decomposition)是信息论的进一步扩展,旨在将信息论所关注的成对关系拓展到多个变量间的复杂相互作用。
 
在信息熵与互信息的基础上,部分信息分解(Partial Information Decomposition)是信息论的进一步扩展,旨在将信息论所关注的成对关系拓展到多个变量间的复杂相互作用。
第61行: 第61行:  
Syn(Xt; Xt+1) > 0
 
Syn(Xt; Xt+1) > 0
   −
在这种背景下,因果涌现被理解为在马尔可夫动力系统中,先前时刻和后续时刻变量之间的协同效应。然后,Rosas在ϕID框架中进一步将因果涌现分为两个部分,向下因果性和因果解耦,这是基于信息原子的不同特征。通过使用ϕID分解互信息I(Xt; Xt+1)得到的十六个ϕID原子中,有四个信息原子对应于协同效应,这被视为因果涌现的组成。这些原子表示为I∂{12}→α(Xt, Xt+1),其中α ∈ A = {{{1}{2}}, {1}, {2}, {12}}。
+
在这种背景下,因果涌现被理解为在马尔可夫动力系统中,先前时刻和后续时刻变量之间的协同效应。然后,Rosas在ϕID框架中进一步将因果涌现分为两个部分,向下因果性和因果解耦,这是基于信息原子的不同特征。通过使用ϕID分解互信息I(Xt; Xt+1)得到的十六个ϕID原子中,有四个信息原子对应于协同效应,这被视为因果涌现的组成。这些原子表示为I∂{12}→α(Xt, Xt+1),其中<math>\alpha \in  A = \{\{\{1\}\{2\}\}, \{1\}, \{2\}, \{12\}\} </math>α ∈ A = {<nowiki>{{1}{2}}</nowiki>, {1}, {2}, {12}}。
    
此外,Rosas还提供了一种量化特定宏观变量(即粗粒化策略)因果涌现的方法。如果一个系统具有产生因果涌现的能力,那么它可能会有一些表现出因果涌现的宏观特征。如果一个特征变量V在系统在时间t的完整状态X已知且精确度完美的情况下,对于时间t+1的未来状态没有提供任何预测能力,那么这个特征变量V被认为是依赖于底层系统的。这等同于Vt在给定Xt的情况下与Xt+1统计独立。然后,对于由Xt描述的系统,如果一个依赖特征Vt表现出因果作用,当且仅当:
Un(Vt; Xt+1|Xt) > 0。
 
此外,Rosas还提供了一种量化特定宏观变量(即粗粒化策略)因果涌现的方法。如果一个系统具有产生因果涌现的能力,那么它可能会有一些表现出因果涌现的宏观特征。如果一个特征变量V在系统在时间t的完整状态X已知且精确度完美的情况下,对于时间t+1的未来状态没有提供任何预测能力,那么这个特征变量V被认为是依赖于底层系统的。这等同于Vt在给定Xt的情况下与Xt+1统计独立。然后,对于由Xt描述的系统,如果一个依赖特征Vt表现出因果作用,当且仅当:
Un(Vt; Xt+1|Xt) > 0。
2,510

个编辑