更改

第58行: 第58行:  
=====因果涌现充分指标=====
 
=====因果涌现充分指标=====
   −
在PID框架中,基于协同信息的概念,Rosas引入了使用<nowiki><math>  \Phi ID<\math> ϕID框架的因果涌现的定量定义,以应对确定适当粗粒化策略的挑战。该定义包括两个方面:首先,确定系统是否具有生成因果涌现的能力;其次,评估在特定宏观特征下因果涌现的发生。
关于系统展示因果涌现的能力,该定义建立了因果涌现与不同时间点变量之间协同关系之间的联系。因此,如果且仅当系统Xt被表示为具有因果涌现特征的能力时:</nowiki>
+
在PID框架中,基于协同信息的概念,Rosas引入了使用 <math>  \Phi ID<\math> ϕID框架的因果涌现的定量定义,以应对确定适当粗粒化策略的挑战。该定义包括两个方面:首先,确定系统是否具有生成因果涌现的能力;其次,评估在特定宏观特征下因果涌现的发生。
关于系统展示因果涌现的能力,该定义建立了因果涌现与不同时间点变量之间协同关系之间的联系。因此,如果且仅当系统Xt被表示为具有因果涌现特征的能力时:</nowiki>
 
Syn(Xt; Xt+1) > 0
 
Syn(Xt; Xt+1) > 0
   第96行: 第96行:     
部分信息分解技术的进步使得进一步分析变量之间的互信息成为可能,从而从多个角度更深入地理解系统属性。在Varley等人的研究中,作者应用部分信息分解来分解系统的互信息。他们使用Williams和Beer提出的方法计算了一个协同偏差指标,以评估协同信息如何在系统的不同层级之间分布。更高的协同偏差表明在协同关系中涉及更多的部分信息。随后,作者观察到,在某些表现出因果涌现的系统中,当系统被简化或减少时,协同偏差会增加。这表明随着我们对系统进行粗粒度化处理,部分信息从冗余转变为协同。得出的总体结论是,涌现可以被理解为一种信息转换的形式。
 
部分信息分解技术的进步使得进一步分析变量之间的互信息成为可能,从而从多个角度更深入地理解系统属性。在Varley等人的研究中,作者应用部分信息分解来分解系统的互信息。他们使用Williams和Beer提出的方法计算了一个协同偏差指标,以评估协同信息如何在系统的不同层级之间分布。更高的协同偏差表明在协同关系中涉及更多的部分信息。随后,作者观察到,在某些表现出因果涌现的系统中,当系统被简化或减少时,协同偏差会增加。这表明随着我们对系统进行粗粒度化处理,部分信息从冗余转变为协同。得出的总体结论是,涌现可以被理解为一种信息转换的形式。
      
=====因果涌现识别=====
 
=====因果涌现识别=====
2,435

个编辑