打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
基于信息分解的因果涌现理论
(查看源代码)
2024年11月24日 (日) 11:26的版本
删除51字节
、
昨天11:26
→因果涌现充分指标
第179行:
第179行:
尽管提出了因果涌现的严格定量定义,但<math> \Phi ID </math>可能很复杂且计算量很大,因此很难将该方法应用于实际系统。此外,PID 计算的不一致性导致因果涌现的定义依赖于特定的 PID 计算。
尽管提出了因果涌现的严格定量定义,但<math> \Phi ID </math>可能很复杂且计算量很大,因此很难将该方法应用于实际系统。此外,PID 计算的不一致性导致因果涌现的定义依赖于特定的 PID 计算。
−
为了解决这些问题,Rosas简化了因果涌现的计算,并建立了一套基于因果解耦和向下因果的识别标准。具体来说,为了避免深入探讨协同信息和冗余信息的具体量化方法,这套标准通过反复减去冗余信息,使得结果成为因果涌现的充分条件,这样做虽然牺牲了一些普遍性,但提高了可靠性。
+
为了解决这些问题,Rosas简化了因果涌现的计算,并建立了一套基于因果解耦和向下因果的识别标准。具体来说,为了避免该方法基于特定的某个协同信息和冗余信息的具体量化方法,这套标准通过反复减去冗余信息,使结果成为因果涌现的充分条件。
三个指标如下:
三个指标如下:
相信未来
2,510
个编辑