更改

添加476字节 、 2018年8月24日 (五) 18:27
第256行: 第256行:     
=== 钉板受限玻尔兹曼机(Spike-and-slab RBMs) ===
 
=== 钉板受限玻尔兹曼机(Spike-and-slab RBMs) ===
深度学习有带【实值】输入的需要,如在高斯受限玻尔兹曼机中一样,引出了“钉板”【受限玻尔兹曼机】,它模拟带严格【二进制】【潜变量】的连续值输入。<ref name="ref30">{{cite journal|last2=Bergstra|first2=James|last3=Bengio|first3=Yoshua|date=2011|title=A Spike and Slab Restricted Boltzmann Machine|url=http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CourvilleBB11.pdf|journal=JMLR: Workshop and Conference Proceeding|volume=15|pages=233–241|last1=Courville|first1=Aaron}}</ref>与基本【RBM】和它的变体一样,钉板【RBM】是【二分图】,好像GRBM一样,可见单元(输入)是实值的。
+
深度学习有带[https://en.wikipedia.org/wiki/Real_number 实值]输入的需要,如在高斯受限玻尔兹曼机中一样,引出了“钉板”[https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine 受限玻尔兹曼机],它模拟带严格[https://en.wikipedia.org/wiki/Binary_variable 二进制][https://en.wikipedia.org/wiki/Latent_variable 潜变量]的连续值输入。<ref name="ref30">{{cite journal|last2=Bergstra|first2=James|last3=Bengio|first3=Yoshua|date=2011|title=A Spike and Slab Restricted Boltzmann Machine|url=http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CourvilleBB11.pdf|journal=JMLR: Workshop and Conference Proceeding|volume=15|pages=233–241|last1=Courville|first1=Aaron}}</ref>与基本RBM和它的变体一样,钉板RBM是[https://en.wikipedia.org/wiki/Bipartite_graph 二分图],好像GRBM一样,可见单元(输入)是实值的。
区别在隐藏层,每个隐藏单元有二进制的发放值【?】和实值的平滑值【?】。spike是一个离散的在零处的【概率质量】,slab是一个连续域上的【概率密度】<ref name="ref32">{{cite conference|last1=Courville|first1=Aaron|last2=Bergstra|first2=James|last3=Bengio|first3=Yoshua|chapter=Unsupervised Models of Images by Spike-and-Slab RBMs|title=Proceedings of the 28th International Conference on Machine Learning|volume=10|pages=1–8|date=2011|url=http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Courville_591.pdf}}</ref>,它们的混合形成了【先验】。<ref name="ref31">{{cite journal|last2=Beauchamp|first2=J|date=1988|title=Bayesian Variable Selection in Linear Regression|journal=Journal of the American Statistical Association|volume=83|issue=404|pages=1023–1032|doi=10.1080/01621459.1988.10478694|last1=Mitchell|first1=T}}</ref>
+
区别在隐藏层,每个隐藏单元有二进制的发放值【?】和实值的平滑值【?】。spike是一个离散的在零处的[https://en.wikipedia.org/wiki/Probability_mass 概率质量],slab是一个连续域上的[https://en.wikipedia.org/wiki/Probability_density 概率密度]<ref name="ref32">{{cite conference|last1=Courville|first1=Aaron|last2=Bergstra|first2=James|last3=Bengio|first3=Yoshua|chapter=Unsupervised Models of Images by Spike-and-Slab RBMs|title=Proceedings of the 28th International Conference on Machine Learning|volume=10|pages=1–8|date=2011|url=http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Courville_591.pdf}}</ref>,它们的混合形成了[https://en.wikipedia.org/wiki/Prior_probability 先验]。<ref name="ref31">{{cite journal|last2=Beauchamp|first2=J|date=1988|title=Bayesian Variable Selection in Linear Regression|journal=Journal of the American Statistical Association|volume=83|issue=404|pages=1023–1032|doi=10.1080/01621459.1988.10478694|last1=Mitchell|first1=T}}</ref>
   −
ss【RBM】的一个扩展是µ-ss[【RBM】,使用【能量函数】中的附加项提供了额外的建模能力。这些项之一使模型形成了spike值的【条件分布】,通过给定一个观测值【边际化出】slab值。
+
ssRBM的一个扩展是µ-ssRBM,使用[https://en.wikipedia.org/wiki/Energy_function 能量函数]中的附加项提供了额外的建模能力。这些项之一使模型形成了spike值的[https://en.wikipedia.org/wiki/Conditional_probability_distribution 条件分布],通过给定一个观测值[https://en.wikipedia.org/wiki/Marginalizing_out 边际化出]slab值。
    
=== 混合层级深度模型(Compound hierarchical-deep models) ===
 
=== 混合层级深度模型(Compound hierarchical-deep models) ===