打开主菜单
首页
随机
登录
设置
关于集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
免责声明
集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
搜索
更改
←上一编辑
下一编辑→
Logistic映射
(查看源代码)
2020年4月30日 (四) 11:36的版本
添加14字节
、
2020年4月30日 (四) 11:36
→混沌与Logistic映射
第237行:
第237行:
−
图10中,右图说明了在Logistic映射的迭代序列上的伸展和折叠。左边 图(a) 显示了Logistic映射在<math>\mu</math>=4条件下的二维庞加莱图,并清楚地显示了差分方程的二次曲线。利用二维及三维的相图可以看出一些Logistic映射的特性。以<math>
μ
</math>=4的Logistic映射为例,二维相图为一抛物线,但是若用相同的序列绘制三维相图,可看出进一步的结构,例如几个一开始很接近的点在迭代后开始发散.特别是位在斜率较大位置的点。
+
图10中,右图说明了在Logistic映射的迭代序列上的伸展和折叠。左边 图(a) 显示了Logistic映射在<math>\mu</math>=4条件下的二维庞加莱图,并清楚地显示了差分方程的二次曲线。利用二维及三维的相图可以看出一些Logistic映射的特性。以<math>
\mu
</math>=4的Logistic映射为例,二维相图为一抛物线,但是若用相同的序列绘制三维相图,可看出进一步的结构,例如几个一开始很接近的点在迭代后开始发散.特别是位在斜率较大位置的点。
此外,以便研究Logistic映射的更深层结构。 图(b)演示了在最初点的附近是如何开始分叉的,特别是在与图中更陡的部分相对应的 <math>x_t</math> 区域。
此外,以便研究Logistic映射的更深层结构。 图(b)演示了在最初点的附近是如何开始分叉的,特别是在与图中更陡的部分相对应的 <math>x_t</math> 区域。
−
第250行:
第249行:
−
有些混沌系统可对于其未来状态的可能性作准确的描述。若一个可能有混沌特性的动力系统存在吸引子,则存在一概率量测描述系统长期在吸引子各部分所花时间的比例。以<math>
μ
</math>=4的Logistic映射为例,初始状态在区间(0,1)中,而吸引子也在区间(0,1)中,其概率量测对应参数<math> a=0.5,b
=0.5
</math>
的Β分布
<ref>{{cite journal |last=Jakobson |first=M. |title=Absolutely continuous invariant measures for one-parameter families of one-dimensional maps |journal=Communications in Mathematical Physics |volume=81 |issue=1 |year=1981 |pages=39–88 |doi=10.1007/BF01941800 |bibcode=1981CMaPh..81...39J }}</ref>,其不变测度为:
+
有些混沌系统可对于其未来状态的可能性作准确的描述。若一个可能有混沌特性的动力系统存在吸引子,则存在一概率量测描述系统长期在吸引子各部分所花时间的比例。以<math>
\mu
</math>=4的Logistic映射为例,初始状态在区间(0,1)中,而吸引子也在区间(0,1)中,其概率量测对应参数<math> a
</math>
=0.5,
<math>
b</math>
=0.5的Β分布
<ref>{{cite journal |last=Jakobson |first=M. |title=Absolutely continuous invariant measures for one-parameter families of one-dimensional maps |journal=Communications in Mathematical Physics |volume=81 |issue=1 |year=1981 |pages=39–88 |doi=10.1007/BF01941800 |bibcode=1981CMaPh..81...39J }}</ref>,其不变测度为:
:<math> {\frac {1}{\pi {\sqrt {x(1-x)}}}}</math>。
:<math> {\frac {1}{\pi {\sqrt {x(1-x)}}}}</math>。
薄荷
7,129
个编辑