网络的规模可以由节点的个数<math>N</math>,或者,少数情况下,连边的数量<math>E</math>(对于没有重边的连通图),连边的个数E的范围一般是从<math>N-1</math> (看做是一个树)到<math>E_{\max}</math> (看做是一个完全图)。在简单图的例子中(网络中在每对节点之间至多存在一条(无向)边,并且没有节点连向自己),可以计算<math>E_{\max}=\tbinom N2=N(N-1)/2</math>;对于有向图(没有自环self-connected的节点),<math>E_{\max}=N(N-1)</math>;对于有向图且允许存在自环的节点,<math>E_{\max}=N^2</math>.还有另外一种特殊情况就是一对节点之间存在重边, <math>E_{\max}=\infty</math>. | 网络的规模可以由节点的个数<math>N</math>,或者,少数情况下,连边的数量<math>E</math>(对于没有重边的连通图),连边的个数E的范围一般是从<math>N-1</math> (看做是一个树)到<math>E_{\max}</math> (看做是一个完全图)。在简单图的例子中(网络中在每对节点之间至多存在一条(无向)边,并且没有节点连向自己),可以计算<math>E_{\max}=\tbinom N2=N(N-1)/2</math>;对于有向图(没有自环self-connected的节点),<math>E_{\max}=N(N-1)</math>;对于有向图且允许存在自环的节点,<math>E_{\max}=N^2</math>.还有另外一种特殊情况就是一对节点之间存在重边, <math>E_{\max}=\infty</math>. |