更改

删除3字节 、 2020年5月23日 (六) 18:08
第613行: 第613行:  
The structural robustness of networks<ref>{{cite book |title= Complex Networks: Structure, Robustness and Function |author1=R. Cohen |author2=S. Havlin |year= 2010 |publisher= Cambridge University Press |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php}}</ref> is studied using [[percolation theory]]. When a critical fraction of nodes is removed the network becomes fragmented into small clusters. This phenomenon is called percolation<ref>{{cite book |title= Fractals and Disordered Systems |author1=A. Bunde |author2=S. Havlin |year= 1996 |publisher= Springer |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_fds.php}}</ref> and it represents an order-disorder type of [[phase transition]] with [[critical exponents]].
 
The structural robustness of networks<ref>{{cite book |title= Complex Networks: Structure, Robustness and Function |author1=R. Cohen |author2=S. Havlin |year= 2010 |publisher= Cambridge University Press |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_com_net.php}}</ref> is studied using [[percolation theory]]. When a critical fraction of nodes is removed the network becomes fragmented into small clusters. This phenomenon is called percolation<ref>{{cite book |title= Fractals and Disordered Systems |author1=A. Bunde |author2=S. Havlin |year= 1996 |publisher= Springer |url= http://havlin.biu.ac.il/Shlomo%20Havlin%20books_fds.php}}</ref> and it represents an order-disorder type of [[phase transition]] with [[critical exponents]].
   −
利用渗流理论研究了网络[34]的结构鲁棒性。 当节点的一个临界部分被移除时,网络变得支离破碎。 这种现象被称为渗流[35] ,它代表了一种从有序-无序的临界指数的相变类型。
+
利用渗流理论研究了网络[34]的结构鲁棒性。当节点的一个临界比例被移除时,网络变得支离破碎。这种现象被称为渗流[35],它代表了一种从有序-无序的临界指数的相变类型。
    
====流行病分析====
 
====流行病分析====
198

个编辑