更改

添加3字节 、 2020年6月24日 (三) 21:56
无编辑摘要
第19行: 第19行:     
'''自组织''':许多非线性相互作用的子系统构成的“宏观”系统是自组织的前提条件。自组织基于外参量(环境、能量通量)而发生。序参量以自组织状态维持。
 
'''自组织''':许多非线性相互作用的子系统构成的“宏观”系统是自组织的前提条件。自组织基于外参量(环境、能量通量)而发生。序参量以自组织状态维持。
 +
 +
 +
==序参量概念==
 +
 +
Essential in synergetics is the order-parameter concept which was originally introduced in the [[Ginzburg–Landau theory]] in order to describe [[phase transition|phase-transitions]] in thermodynamics. The order parameter concept is generalized by Haken to the "enslaving-principle" saying that the dynamics of fast-relaxing (stable) modes is completely determined by the 'slow' dynamics of as a rule only a few 'order-parameters' (unstable modes). The order parameters can be interpreted as the amplitudes of the unstable modes determining the macroscopic pattern.
 +
 +
 +
序参量的概念是协同学的核心。这个概念最初是在[[Ginzburg-Landau理论]]中为了描述热力学中[[相变]]而引入的。哈肯将序参量概念概括为“奴役原理”,即快速释放(稳定)模态的动力学完全被由少数“有序参量”(不稳定模态)构成的“慢”动力学所决定。可以把有序参量理解为决定宏观斑图的不稳定模态振幅。
 +
 +
 +
As a consequence, self-organization means an enormous reduction of [[Degrees of freedom (physics and chemistry)|degrees of freedom]] (entropy) of the system which macroscopically reveals an increase of 'order' (pattern-formation). This far-reaching macroscopic order is independent of the details of the microscopic interactions of the subsystems. This supposedly explains the [[self-organization]] of patterns in so many different systems in physics, chemistry and biology.
 +
 +
 +
因此,自我组织意味着系统[[自由度(物理和化学)]](熵)的显著减少,宏观上表现为“秩序”(斑图形成)的增加。这种广泛的宏观秩序独立于子系统之间微观相互作用细节。这可能解释了物理、化学和生物学方面许多不同系统中斑图的[[自组织]]现象。
    
==协同学的一般原理==
 
==协同学的一般原理==
第41行: 第55行:     
然后,当一个或多个控制参数发生变化时,便会检查解决方案的稳定性,这在Synergetics中使用的常规方法是通过线性稳定性理论来完成的。根据谱理论,线性稳定性问题的解本质上是指数性质的。呈指数增长或中性的解表示“不稳定模式”。在完全非线性的处理中,它们的幅度或相位成为阶跃参数,这也考虑了波动。然后将运动方程式转换为这些新变量,定义阶数参数的振幅和相位以及仍然稳定的模式。然后,考虑到波动,消除了阻尼(稳定)模式(从动原理)。所得的阶次参数方程通常是低维的,属于Langevin方程类型,但是具有非线性。它们可以被转换成福克-普朗克方程。
 
然后,当一个或多个控制参数发生变化时,便会检查解决方案的稳定性,这在Synergetics中使用的常规方法是通过线性稳定性理论来完成的。根据谱理论,线性稳定性问题的解本质上是指数性质的。呈指数增长或中性的解表示“不稳定模式”。在完全非线性的处理中,它们的幅度或相位成为阶跃参数,这也考虑了波动。然后将运动方程式转换为这些新变量,定义阶数参数的振幅和相位以及仍然稳定的模式。然后,考虑到波动,消除了阻尼(稳定)模式(从动原理)。所得的阶次参数方程通常是低维的,属于Langevin方程类型,但是具有非线性。它们可以被转换成福克-普朗克方程。
  −
==序参量概念==
  −
  −
Essential in synergetics is the order-parameter concept which was originally introduced in the [[Ginzburg–Landau theory]] in order to describe [[phase transition|phase-transitions]] in thermodynamics. The order parameter concept is generalized by Haken to the "enslaving-principle" saying that the dynamics of fast-relaxing (stable) modes is completely determined by the 'slow' dynamics of as a rule only a few 'order-parameters' (unstable modes). The order parameters can be interpreted as the amplitudes of the unstable modes determining the macroscopic pattern.
  −
  −
  −
序参量的概念是协同学的核心。这个概念最初是在[[Ginzburg-Landau理论]]中为了描述热力学中[[相变]]而引入的。哈肯将序参量概念概括为“奴役原理”,即快速释放(稳定)模态的动力学完全被由少数“有序参量”(不稳定模态)构成的“慢”动力学所决定。可以把有序参量理解为决定宏观斑图的不稳定模态振幅。
  −
  −
  −
As a consequence, self-organization means an enormous reduction of [[Degrees of freedom (physics and chemistry)|degrees of freedom]] (entropy) of the system which macroscopically reveals an increase of 'order' (pattern-formation). This far-reaching macroscopic order is independent of the details of the microscopic interactions of the subsystems. This supposedly explains the [[self-organization]] of patterns in so many different systems in physics, chemistry and biology.
        −
因此,自我组织意味着系统[[自由度(物理和化学)]](熵)的显著减少,宏观上表现为“秩序”(斑图形成)的增加。这种广泛的宏观秩序独立于子系统之间微观相互作用细节。这可能解释了物理、化学和生物学方面许多不同系统中斑图的[[自组织]]现象。
      
==协同学的众多应用==
 
==协同学的众多应用==
330

个编辑