然后,当一个或多个控制参数发生变化时,便会检查解决方案的稳定性,这在Synergetics中使用的常规方法是通过线性稳定性理论来完成的。根据谱理论,线性稳定性问题的解本质上是指数性质的。呈指数增长或中性的解表示“不稳定模式”。在完全非线性的处理中,它们的幅度或相位成为阶跃参数,这也考虑了波动。然后将运动方程式转换为这些新变量,定义阶数参数的振幅和相位以及仍然稳定的模式。然后,考虑到波动,消除了阻尼(稳定)模式(从动原理)。所得的阶次参数方程通常是低维的,属于Langevin方程类型,但是具有非线性。它们可以被转换成福克-普朗克方程。 | 然后,当一个或多个控制参数发生变化时,便会检查解决方案的稳定性,这在Synergetics中使用的常规方法是通过线性稳定性理论来完成的。根据谱理论,线性稳定性问题的解本质上是指数性质的。呈指数增长或中性的解表示“不稳定模式”。在完全非线性的处理中,它们的幅度或相位成为阶跃参数,这也考虑了波动。然后将运动方程式转换为这些新变量,定义阶数参数的振幅和相位以及仍然稳定的模式。然后,考虑到波动,消除了阻尼(稳定)模式(从动原理)。所得的阶次参数方程通常是低维的,属于Langevin方程类型,但是具有非线性。它们可以被转换成福克-普朗克方程。 |