人工生命历史

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索

自从人类开始记录他们的神话和故事以来,人工制品被赋予生命的想法就一直吸引着人类。无论是《皮格马利翁》还是《弗兰肯斯坦》,人类一直对 人工生命 artificial life的概念着迷。

计算机出现之前

自动装置是相当新奇的东西。在计算机和电子设备出现之前,一些自动装置设备非常复杂,涉及气体力学、机械力学和水力学。第一个自动机诞生于公元前三世纪到公元前二世纪之间,由亚历山大港的希罗发明,其中包括复杂的机械和液压解决方案[1]。希罗的许多著名作品被收录在《气体力学》一书中,直到近代早期,这本书还被用于建造机器[2]。1490年,列奥纳多·达·芬奇 Leonardo da Vinci还建造了一个装甲骑士,这被认为是西方文明中第一个人形机器人。[3]

其他早期著名的例子包括 al-Jazari 的人形机器人。这位阿拉伯发明家曾经构造了一组自动机,可以命令它们演奏不同的乐曲[4] 。还有1735年展出的雅克·德·沃康森 Jacques de Vaucanson的人造鸭子,它有数千个活动部件,是最早模仿生物系统的机器之一。据报道,这只鸭子能吃、能消化、能喝水、能嘎嘎叫,还能在游泳池里溅水。[5]它在整个欧洲展出,直至其年久失修。

然而,直到廉价计算力的发明,人工生命才真正成为一门合法的科学,能够更多地沉浸在理论和计算中,而非仅存在于机械和神话里。

1950-1970年代

现代最早提出人工生命(独立于人工智能)潜力假说的思想家之一,是数学和计算机天才约翰·冯·诺依曼 John von Neumann。20世纪40年代末,莱纳斯·鲍林 Linus Pauling在加利福尼亚州帕萨迪纳市举办了希克森研讨会,John von Neumann在会上发表了题为“自动机的一般逻辑理论”的演讲。他将“自动机”定义为:通过结合环境信息和自身编程,可逻辑化地逐步执行行为动作的任何机器,并表示,最终人们会发现自然生物也遵循着类似的简单规则。他还谈到了自我复制机器的想法。他设想了一台机器——一台自动运动的机器——由一台控制计算机、一个构造臂和一长串指令组成,漂浮在零部件的湖中。通过执行它自己身体的一部分的指令,它就能制造出一台完全相同的机器。他遵循这个想法,创建了一个纯粹基于逻辑的自动机(与Stanislaw Ulam一起),不需要物理实体,而是基于无限网格中细胞状态的变化——这是第一个细胞自动机元胞自动机格状自动机)。与后来的CAs相比,它是非常复杂的,它有成千上万的细胞,每个细胞可以存在于29个状态中的一个,但是冯·诺依曼觉得他需要这种复杂性,以便它不仅能作为一个自我复制的“机器”运行,而且能像艾伦·图灵 Alan Turing定义的那样成为一台通用计算机。这个“通用构造函数”读取指令磁带,并写出一系列单元格,这些单元格可以被激活,从而留下原始机器及其磁带的功能齐全的副本。John von Neumann一直致力于他的自动机理论,直到他去世,并认为这是他最重要的工作。

20世纪50年代,霍默•雅各布森 Homer Jacobson用一组模型火车说明了基本的自我复制——一个由“头”和“尾”车厢组成的种子“有机体”,只要有一个可供提取的新车厢随机池,就可以使用系统的简单规则,持续创造出与自身相同的新“有机体”。

爱德华·摩尔 Edward F. Moore提出了“人造活植物”的概念,这种植物是漂浮的工厂,它们可以创造自己的复制品。可以对它们进行程序设计,让它们发挥某些功能(提取淡水,从海水中提取矿物质),与指数级增长的工厂才能带来巨大的回报相比,这项投资的规模相对较小。弗里曼·戴森 Freeman Dyson也研究了这个想法,设想了可自我复制的机器被送去探索和开发其他行星和卫星,美国宇航局(NASA)一个名为“自我复制系统概念小组” self- replication Systems Concept Team的团队在1980年进行了一项关于在月球上自行建造工厂的可行性研究。

20世纪60年代,剑桥大学 University of Cambridge 教授约翰·霍顿·康威 John Horton Conway发明了最著名的细胞自动机。他称之为“生命游戏”,并通过《科学美国人》杂志的马丁·加德纳专栏进行宣传。

1970-1980年代

曾与John von Neumann共事(事实上,在John von Neumann去世后整理了他的论文)的著名学者亚瑟·伯克 Arthur Burks领导了密歇根大学 University of Michigan的“计算机逻辑小组” Logic of Computers Group。他把19世纪美国思想家查尔斯·桑德斯·皮尔斯 Charles Sanders Peirce被忽视的观点带入现代。Peirce坚信自然界的一切活动都是基于逻辑的(尽管并不总是演绎逻辑)。 在20世纪70年代早期,密歇根大学的研究小组是少数几个仍然对生命和CAs感兴趣的研究小组之一;该小组的一名学生托马索·托福利 Tommaso Toffoli在他的博士论文中指出,该领域非常重要,因为它的研究结果解释了自然界复杂效应背后的简单规则。Toffoli后来提供了一个关键的证据,证明CAs是可逆的,就像真正的宇宙被认为是可逆的一样。

克里斯托弗·兰顿 Christopher Langton是一位非传统的研究者,他平凡的学术生涯让他找到了一份为一家医院编程DEC大型机的工作。他被Conway的“生命游戏”迷住了,并开始追求计算机可以模仿生物的想法。经过多年的研究(和一次几乎致命的悬挂式滑翔事故),他开始尝试实现John von Neumann的CA和埃德加·科德 Edgar F. Codd 的工作,后者将John von Neumann最初的29个状态怪物简化为只有8个状态。1979年10月,他仅用一台Apple II型台式电脑就成功地创造出了第一台能够自我复制的计算机有机体。1982年,33岁的他加入了伯克在计算机逻辑小组的研究生课程,并帮助建立了一门新的学科。

Langton关于《人工生命》的官方会议公告是对这个之前几乎不存在的领域最早的描述[6]:

人工生命是对具有自然生命系统行为特征的人工系统的研究。它寻求解释生命的任何可能表现形式,而不局限于地球上已经演化出来的特殊例子。这包括生物和化学实验、计算机模拟和纯理论研究。发生在分子、社会和进化尺度上的过程需要进行研究。最终目标是提取出生命系统的逻辑形式。

微电子技术和基因工程将很快使我们有能力在硅片中和在体外创造新的生命形式。这种能力将给人类带来有史以来最深远的技术、理论和伦理挑战。对于那些试图模拟或合成生命系统各方面的人来说,现在似乎是合适的时机。

艾埃德·弗雷德金(Ed Fredkin)在麻省理工学院(MIT)成立了信息力学小组,由Toffoli、诺曼·马格卢斯 Norman Margolus、杰拉德·维克尼亚克 Gerard Vichniac和查尔斯·贝内特 Charles Bennett组成。这个小组创造了一台专门用来执行细胞自动机的计算机,并最终将其缩小到一块电路板的大小。这种“细胞自动机”使得那些买不起复杂计算机的科学家也能够进行大量的人工生命研究。

1982年,计算机科学家斯蒂芬·沃尔夫拉姆 Stephen Wolfram将他的注意力转向细胞自动机。他探索和分类了一维CAs所显示的复杂性类型,并展示了它们如何应用于自然现象,如贝壳的模式和植物生长的性质。

诺曼·帕卡德 Norman Packard在高级研究院与沃尔夫拉姆一起工作,他使用CAs来模拟雪花的生长,遵循非常基本的规则。

1987年,计算机动画师克雷格·雷诺兹 Craig Reynolds同样使用三个简单的规则在一个计算机程序中创建了可识别的群集行为。由于完全没有自顶向下的编程,群集体产生了类似生命体的解决方案,以避开摆在他们道路上的障碍。计算机动画一直是人工生命研究的主要商业驱动力,因为电影的创作者试图寻找更现实和廉价的方式,来使自然形式如植物、动物运动、毛发生长和复杂的有机材质等具有生命力。

多恩·法默 J. Doyne Farmer是将人工生命研究与复杂自适应系统这一新兴领域联系起来的关键人物,他在非线性研究中心(洛斯阿拉莫斯国家实验室的一个基础研究部门)工作,就在其明星混沌理论学家米切尔·费根鲍姆即将离开的时候。1985年5月,Farmer和诺曼·帕卡德 Norman Packard主持了一个名为“进化、游戏和学习”的会议,这预示了后来的人工生命会议的许多主题。

2000年

在生态方面,2006年,彼得·图尔钦 Peter Turchin和米哈伊尔·伯切夫 Mikhail Burtsev通过人工生命重新引入了关于动物合作行为进化的研究(由上世纪60年代的汉密尔顿 W. D. Hamilton发起,产生了亲缘选择、互惠、多层次选择和文化群体选择等理论[7][8])。在此之前,博弈论被用于类似的研究,然而,该方法被认为是数量相当有限的可能策略和有争议的支付规则集。相反,这里设计的人工生命模型是基于Conway的生命游戏,但增加了很多复杂性(可能会出现超过101000种策略)。最重要的是,相互作用的因子具有外部表型标记,可在组内成员之间识别。实际上,它表明,如果有能力感知这些标记,系统内的因子就能够在最简假设下进化出新的群体行为。在已知的资产阶级-鹰派-鸽派对策策略之上,这里有两种新颖的合作攻击和防御模式从模拟中产生。

对于该设置,这个二维人工世界被划分为单元,每个单元为空或包含一个资源包。一个空单元可以获得单位时间内一定概率的资源包,并在因子消耗该资源时丢失它。每个因子都是由一组受体、效应器(控制因子行为的组件)和连接两者的神经网络构成的。为了对环境做出反应,个体可以休息、进食、分裂繁殖、移动、转身和攻击。所有的动作消耗的能量来自于它的内部能量储存;一旦耗尽,因子就会死亡。消耗资源,以及击败其他因子后,产生能量储存的增加。繁殖模式为无性繁殖,其后代获得双亲能量的一半。因子还配备了感官输入,允许它们检测一个参数内除了它自己活力水平以外的资源或其他成员。至于表型标记,它们并不影响行为,而仅仅作为“遗传”相似性的指标。遗传是通过让后代继承相关的信息并承受一定的突变率来实现的。

本研究旨在探讨表型标记的存在对模型合作策略演化范围的影响。此外,由于该二维环境的可用资源是有限的,模拟还可以确定环境承载力对其涌现的影响。

一种前所未见的策略被称为“乌鸦”。这些因子使细胞与群内成员共存,从而避免了群内竞争,并主动攻击群外成员。另一种名为“starling”的策略是让因子与组内成员共享细胞。尽管由于资源分割,个体拥有较小的能量存储,但这种策略可以通过数量上的优势,对大型入侵者进行高效防御。从生态学的角度来说,这类似于许多小型鸟类在集体防御捕食者时所具有的聚众滋扰行为。

总之,研究认为,模拟结果表明,在人工生命框架内,“不仅可以模拟一种战略如何取代另一种战略,而且可以模拟新战略从大量可能性中产生的过程”,从而对地域性的演变具有重要意义[9]

创造人工生命细胞模型的工作也在进行中。作为许多不同研究项目的一部分,建立细胞行为的完整生化模型的初步工作正在进行中,即蓝色基因项目,该项目旨在了解蛋白质折叠背后的机制。

参见

参考文献

  1. Droz, Edmond. (April 1962), From joined doll to talking robot, New Scientist, vol. 14, no. 282. pp. 37–40.
  2. Engelhard, Margret (2016). Synthetic Biology Analysed: Tools for Discussion and Evaluation. Cham: Springer. pp. 75. ISBN 9783319251431. 
  3. Tzafestas, Spyros (2014). Introduction to Mobile Robot Control. Waltham, MA: Elsevier. pp. 3. ISBN 9780124170490. 
  4. Winston, Robert (2013). Science Year by Year , Dorling Kindersley, 2013: Science Year by Year. London: DK. pp. 334. ISBN 9781409316138. 
  5. Gelman, Rony. "Gallery of Automata". Retrieved 2006-03-03.
  6. Langton, C.G. (1989) "Artificial Life", in Artificial Life, Langton (ed), (Addison-Wesley:Reading, MA) page 1.
  7. Hamilton, W. D. The genetical evolution of social behaviour. I and II. J. Theor.Biol. 7, 1–52 (1964).
  8. Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211,1390–1396 (1981).
  9. Burtsev M, Turchin P. 2006. Evolution of cooperative strategies from first principles. Nature

外部链接

Aguilar, W., Santamaría-Bonfil, G., Froese, T., and Gershenson, C. (2014). The past, present, and future of artificial life. Frontiers in Robotics and AI, 1(8). https://dx.doi.org/10.3389/frobt.2014.00008


类别:人工生命

类别:人工生命的历史