讨论:计算力学

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
涌现仿真讨论 | 贡献2024年8月30日 (五) 00:46的版本 (感谢大家的评论,有准备好的同学,也请攥写正文。)
跳到导航 跳到搜索

诚邀各位,敬请加入《因果涌现读书会》,参与共创任务。条件允许的情况下,带着活力与激情投入到科学研究当中。

历史渊源

YMZ:这部分内容目前来看似乎不必要,不是读者关心的内容,可以删去。

LHF:按张江老师说法,计算力学对涌现的研究较早,或许可删。我个人的学习路径为从复杂科学->因果阶梯->因果涌现。

问题背景

YMZ:涌现现象 和 涌现关系 两个子标题之间的关联是什么?

LHF:写作这部分内容时,参考了集合论的学习顺序,先从集合的“元素”再到“关系”。写着写得,有时候混淆了。

涌现现象

  • 众所周知,自然界中广泛存在各种物质及其运动,物质本身和运动轨迹,都呈现出一定程度的模式和斑图。

YMZ:补充一些具体的例子

LHF:木星大红斑应该是比较好的例子。集智俱乐部发表过文章《从生命到星系,新数学揭示大尺度秩序如何涌现》[1],引用了木星大红斑的影像资料,非常震撼。里面有提到Jim Crutchfield的工作,重读这些文章,应该有利于我们写好斑图涌现及计算力学的词条。

  • **计算力学**这门结合了复杂网络、信息论的理论框架

YMZ:两个*可以去掉,另外为什么说它结合了复杂网络呢?

LHF:两个*会去掉。计算力学结合了复杂网络,是因为计算力学一旦形成算法,就可以映射成状态机,而状态机也应该可以映射到复杂网络。只是为了让部分读者看到公式不用太犯难。

  • 在牛顿力学提出以后,...... 这时往往需要借助新的科技手段,来对这些模式进行深入研究,发现其潜在的原理和规律。

YMZ:这两段话作用是什么?可以略写。

LHF:想引入复杂科学和因果科学。牛顿力学中,物理运动的变化,来源于力的作用,或者相反。通常认为牛顿定律不涉及解释跨层级的现象,然后力是路程对时间的二阶导数,我个人还在深入理解导数(微积分)是否跨层级。毕竟导数一种表达是无穷小/无穷小的极限存在,然后忽略更高阶无穷小。

  • 一般对涌现现象定义为不能简单归结为元素间的相互作用力,而需要从对应层面来描述的现象,认为是涌现。

YMZ:这样的句式不太好读,另外内容不准确,“对应层面”是谁和谁对应呢?

LHF:句式确实要调整。“对应层面”涉及到如何来定义的问题,如果有观察者,则可建立视界面,物质/能量流穿过该视界面,转化成信息,这是一种理解方式。我们对观察者做个形式化:对高维对象,做低维映射,在低维的投影,只要不是完全随机,就有斑图(秩序)。

  • 如果建立了促成这种涌现现象发生的机理的算法模型,则细化为因果涌现,是随附了宏观动力学的一类涌现。

YMZ:这句话对一般读者来说太难理解了,读这个词条的读者可能完全不知道什么是因果涌现。这句话似乎暗示因果涌现是涌现现象的一种,但其实因果涌现是量化涌现的一个手段和理论框架。另外,“随附”这个词作为哲学词汇出现也不常用

LHF:因果涌现可以是量化涌现的手段和理论框架,但“因果力”这些概念我再看看是否包含其中。我是在读书会到听到“随附”这个词,是个哲学词汇的话确实可以不用在词条里。

  • 这种涌现往往比微观层面更强

YMZ:是想说“宏观层面的动力学因果效应比微观层面的更强”?像这样的句子缺失成分就不容易理解。

LHF:可以做这些补充。

  • 在Erik Hoel的理论框架中,用有效信息EI来度量因果涌现效应的强弱。

YMZ:不建议在“问题背景”里就提因果涌现,可以后面立一个小节谈计算力学和因果涌现的关系。

LHF:“问题背景”我再把握一下,毕竟“计算力学”涵盖的内容很多,所解决的问题也比较广泛。

  • 在计算力学框架中,则在某些层面将“新颖”就归结为“涌现”

YMZ:在这个框架里,涌现不只是“新颖”

LHF:涌现如果是要通过粗粒化、低维投影、观察者效应来形成,则不同的“效应器”会形成不同的“涌现”。“计算力学”框架里,应该能做出不同的映射/效应器。

  • 自然界中(Nature)或宇宙(Prototype Universe)中总是处在不断变化之中,这也是相对的......

YMZ: 到这一段少一个过渡,以及这一段也很难理解,我没有看太懂。

LHF:星系轨道和木星大红斑,是随时间变化的。但如果高度抽象到薛金鑫老师讲的那个程度,整个宇宙过程已知了,那甚至可以没有时间,只有能量。我们应该不同编写这方面内容。

涌现关系

YMZ:图片还比较简陋,可以再改改

LHF:原始的图的确简陋,元素一多就感觉像蚁群、鱼群了,如果形式化还需请教大家。另外新增了一幅图,大致表达了自己理解到的含义,用计算机的语言来说,就是使状态机具有可重编程功能。希望自己可以在画图、形式语言上能更加精进。

  • 这个过程本身从定性上来讲,也是一种涌现现象。

YMZ:这应该不是作者的本义,关键在于主体内部对世界的建模有没有捕捉到pattern

LHF:有些文章读着读着,很容易将pattern的概念泛化得太厉害,我看怎么能收敛一些。

  • 有关的文献将极大的环境称为宇宙,其下是环境和智能体。

YMZ:直接用“系统”、“环境”、“主体”来指称就可以了。

LHF:我先理解一下。

统计复杂度

柯氏复杂度

  • 柯式复杂度是大家公认的复杂度度量方法

YMZ:可以说是“公认最符合直觉的复杂度度量方法”

LHF:谢谢补充。

  • 在文献《Towards a stable definition of Kolmogorov-Chaitin complexity》[5]中

YMZ:不需要在正文里写参考文献的全名。

LHF:谢谢纠正,我会改下引文形式。

  • 定义是一个字符串s对于通用图灵机U的柯尔莫哥洛夫-蔡汀(Kolmogorov-Chaitin)复杂度定义为输出该字符串s的最短程序p的二进制长度。

YMZ:句子有问题。

LHF:感谢意见,确实要改得通顺一些。

  • 针对K式复杂度的主要评论是它高度依赖编程语言的选择。

YMZ:讲柯氏复杂度的时候要围绕它和计算力学的关系,包括下面的内容也要注意

LHF:还要想办法理解好“柯氏复杂度”,或许在“计算力学”词条里不用讲太深。