更改

跳到导航 跳到搜索
第56行: 第56行:  
上一节中方法利用的是变量的协方差矩阵的秩的约束(second-order statistics),忽略了变量中隐含的非高斯性(High-order statistics),导致部分因果信息被丢失。例如图2中的因果结构,包含4个隐变量和8个观察变量,上述的方法无法从这8个观察变量中去恢复隐变量间的因果结构。对于变量的非高斯而言,首先我们注意到非高斯性是可以根据观察数据轻松地检验此假设。此外,正如Cramér [1962]所述的Cramér分解定理,与高斯变量不同,非高斯分布的变量预计将无处不在,Spirtes和Zhang也同样在文献[Spirtes and Zhang 2016]中指出非高斯数据的普遍性。
 
上一节中方法利用的是变量的协方差矩阵的秩的约束(second-order statistics),忽略了变量中隐含的非高斯性(High-order statistics),导致部分因果信息被丢失。例如图2中的因果结构,包含4个隐变量和8个观察变量,上述的方法无法从这8个观察变量中去恢复隐变量间的因果结构。对于变量的非高斯而言,首先我们注意到非高斯性是可以根据观察数据轻松地检验此假设。此外,正如Cramér [1962]所述的Cramér分解定理,与高斯变量不同,非高斯分布的变量预计将无处不在,Spirtes和Zhang也同样在文献[Spirtes and Zhang 2016]中指出非高斯数据的普遍性。
    +
[[File:基于GIN的方法.png|400px|center|thumb|图2:涉及4个隐变量的因果结构,其中X_i,i=1,…,8为观察变量。]]
   −
图2:涉及4个隐变量的因果结构,其中X_i,i=1,…,8为观察变量。
   
为此,Xie等人[Xie et al., 2020 & Cai et al., 2019]根据观察数据的高阶统计量,设计了GIN (Generalized Independent Noise condition) 条件,以刻画潜在隐变量间的分离准则。直观上来说:泛化独立噪声(GIN) 条件是关于刻画观察变量的组合之间是否独立的性质,所以它可以被认为是经典的独立噪声 (independent noise (IN)) 条件的一种扩展。我们发现,通过检验一些GIN条件是否成立,能够帮助找出因果隐变量是否存在,所在位置,以及这些隐变量之间的因果关系。基于此,我们提出了一种两阶段的GIN发现算法,首先去定位隐变量及其个数,其次学习隐变量间的因果关系。
 
为此,Xie等人[Xie et al., 2020 & Cai et al., 2019]根据观察数据的高阶统计量,设计了GIN (Generalized Independent Noise condition) 条件,以刻画潜在隐变量间的分离准则。直观上来说:泛化独立噪声(GIN) 条件是关于刻画观察变量的组合之间是否独立的性质,所以它可以被认为是经典的独立噪声 (independent noise (IN)) 条件的一种扩展。我们发现,通过检验一些GIN条件是否成立,能够帮助找出因果隐变量是否存在,所在位置,以及这些隐变量之间的因果关系。基于此,我们提出了一种两阶段的GIN发现算法,首先去定位隐变量及其个数,其次学习隐变量间的因果关系。
   第67行: 第67行:     
<br>
 
<br>
 +
 
====层级结构学习的方法(latent hierarchical structure)====
 
====层级结构学习的方法(latent hierarchical structure)====
 
本小节继续考虑发现隐藏的因果变量及其它们之间的因果关系问题。相较于上述两个小节的模型,这里考虑更加宽泛的一种模型设定,允许一些隐藏的变量没有直接观察的变量作为其子节点,如图3中的隐变量L_1。为解决该问题,最近Xie等人[Xie et al., 2022]提出了一种最小层级结构的充分条件,并证明了在该条件下,线性非高斯的隐变量层级结构是可以通过部分观察变量完全识别的,包括隐变量的个数及其因果结构关系。
 
本小节继续考虑发现隐藏的因果变量及其它们之间的因果关系问题。相较于上述两个小节的模型,这里考虑更加宽泛的一种模型设定,允许一些隐藏的变量没有直接观察的变量作为其子节点,如图3中的隐变量L_1。为解决该问题,最近Xie等人[Xie et al., 2022]提出了一种最小层级结构的充分条件,并证明了在该条件下,线性非高斯的隐变量层级结构是可以通过部分观察变量完全识别的,包括隐变量的个数及其因果结构关系。
7,129

个编辑

导航菜单