第29行: |
第29行: |
| 兰顿关于《人工生命》的官方会议公告是对这个之前几乎不存在的领域最早的描述<ref>Langton, C.G. (1989) "Artificial Life", in ''Artificial Life'', Langton (ed), (Addison-Wesley:Reading, MA) page 1.</ref>: | | 兰顿关于《人工生命》的官方会议公告是对这个之前几乎不存在的领域最早的描述<ref>Langton, C.G. (1989) "Artificial Life", in ''Artificial Life'', Langton (ed), (Addison-Wesley:Reading, MA) page 1.</ref>: |
| | | |
| + | <blockquote>''人工生命是对具有自然生命系统行为特征的人工系统的研究。它寻求解释生命的任何可能表现形式,而不局限于地球上已经演化出来的特殊例子。这包括生物和化学实验、计算机模拟和纯理论研究。发生在分子、社会和进化尺度上的过程需要进行研究。最终目标是提取出生命系统的逻辑形式。''</blockquote> |
| | | |
| + | <blockquote>''微电子技术和基因工程将很快使我们有能力在硅片中和在体外创造新的生命形式。这种能力将给人类带来有史以来最深远的技术、理论和伦理挑战。对于那些试图模拟或合成生命系统各方面的人来说,现在似乎是合适的时机。</blockquote> |
| | | |
− | <blockquote>''Artificial life is the study of artificial systems that exhibit behavior characteristic of natural living systems. It is the quest to explain life in any of its possible manifestations, without restriction to the particular examples that have evolved on earth. This includes biological and chemical experiments, computer simulations, and purely theoretical endeavors. Processes occurring on molecular, social, and evolutionary scales are subject to investigation. The ultimate goal is to extract the logical form of living systems.''</blockquote>
| + | [[艾埃德·弗雷德金]](Ed Fredkin)在[[麻省理工学院(MIT)]]成立了信息力学小组,由托福利(Toffoli)、[[诺曼·马格卢斯]](Norman Margolus)、[[杰拉德·维克尼亚克]](Gerard Vichniac)和[[查尔斯·贝内特]](Charles Bennett)组成。这个小组创造了一台专门用来执行细胞自动机的计算机,并最终将其缩小到一块电路板的大小。这种“细胞自动机”使得那些买不起复杂计算机的科学家也能够进行大量的人工生命研究。 |
| | | |
− | <blockquote>Artificial life is the study of artificial systems that exhibit behavior characteristic of natural living systems. It is the quest to explain life in any of its possible manifestations, without restriction to the particular examples that have evolved on earth. This includes biological and chemical experiments, computer simulations, and purely theoretical endeavors. Processes occurring on molecular, social, and evolutionary scales are subject to investigation. The ultimate goal is to extract the logical form of living systems.</blockquote>
| + | 1982年,计算机科学家[[斯蒂芬·沃尔夫拉姆]](Stephen Wolfram)将他的注意力转向细胞自动机。他探索和分类了一维CAs所显示的复杂性类型,并展示了它们如何应用于自然现象,如贝壳的模式和植物生长的性质。 |
| | | |
− | 人工生命是对具有自然生命系统行为特征的人工系统的研究。它寻求解释生命的任何可能表现形式,而不局限于地球上已经演化出来的特殊例子。这包括生物和化学实验、计算机模拟和纯理论研究。发生在分子、社会和进化尺度上的过程需要进行研究。最终目标是提取出生命系统的逻辑形式。
| + | [[诺曼·帕卡德]](Norman Packard)在高级研究院与沃尔夫拉姆一起工作,他使用CAs来模拟雪花的生长,遵循非常基本的规则。 |
| | | |
| + | 1987年,计算机动画师[[克雷格·雷诺兹]](Craig Reynolds)同样使用三个简单的规则在一个计算机程序中创建了可识别的[[群集行为]]。由于完全没有自顶向下的编程,群集体产生了类似生命体的解决方案,以避开摆在他们道路上的障碍。计算机动画一直是人工生命研究的主要商业驱动力,因为电影的创作者试图寻找更现实和廉价的方式,来使自然形式如植物、动物运动、毛发生长和复杂的有机材质等具有生命力。 |
| | | |
| + | [[多恩·法默]](J. Doyne Farmer)是将人工生命研究与复杂自适应系统这一新兴领域联系起来的关键人物,他在非线性研究中心([[洛斯阿拉莫斯国家实验室]]的一个基础研究部门)工作,就在其明星混沌理论学家[[米切尔·费根鲍姆]]即将离开的时候。1985年5月,法默和[[诺曼·帕卡德]](Norman Packard)主持了一个名为“进化、游戏和学习”的会议,这预示了后来的人工生命会议的许多主题。 |
| | | |
− | <blockquote>''Microelectronic technology and genetic engineering will soon give us the capability to create new life forms ''in silico'' as well as ''in vitro''. This capacity will present humanity with the most far-reaching technical, theoretical and ethical challenges it has ever confronted. The time seems appropriate for a gathering of those involved in attempts to simulate or synthesize aspects of living systems.''</blockquote>
| + | ==2000年== |
− | | |
− | <blockquote>Microelectronic technology and genetic engineering will soon give us the capability to create new life forms in silico as well as in vitro. This capacity will present humanity with the most far-reaching technical, theoretical and ethical challenges it has ever confronted. The time seems appropriate for a gathering of those involved in attempts to simulate or synthesize aspects of living systems.</blockquote>
| |
− | | |
− | 微电子技术和基因工程将很快使我们有能力在硅片中和在体外创造新的生命形式。这种能力将给人类带来有史以来最深远的技术、理论和伦理挑战。对于那些试图模拟或合成生命系统各方面的人来说,现在似乎是合适的时机。
| |
− | | |
− | | |
− | | |
− | [[Ed Fredkin]] founded the Information Mechanics Group at [[Massachusetts Institute of Technology|MIT]], which united Toffoli, [[Norman Margolus]], [[Gerard Vichniac]], and [[Charles H. Bennett (computer scientist)|Charles Bennett]]. This group created a computer especially designed to execute cellular automata, eventually reducing it to the size of a single circuit board. This "cellular automata machine" allowed an explosion of alife research among scientists who could not otherwise afford sophisticated computers.
| |
− | | |
− | Ed Fredkin founded the Information Mechanics Group at MIT, which united Toffoli, Norman Margolus, Gerard Vichniac, and Charles Bennett. This group created a computer especially designed to execute cellular automata, eventually reducing it to the size of a single circuit board. This "cellular automata machine" allowed an explosion of alife research among scientists who could not otherwise afford sophisticated computers.
| |
− | | |
− | 艾埃德·弗雷德金(Ed Fredkin)在麻省理工学院(MIT)成立了信息力学小组,由托福利(Toffoli)、诺曼·马格卢斯(Norman Margolus)、杰拉德·维克尼亚克(Gerard Vichniac)和查尔斯·贝内特(Charles Bennett)组成。这个小组创造了一台专门用来执行细胞自动机的计算机,并最终将其缩小到一块电路板的大小。这种“细胞自动机”使得那些买不起复杂计算机的科学家也能够进行大量的人工生命研究。
| |
− | | |
− | | |
− | | |
− | In 1982, computer scientist named [[Stephen Wolfram]] turned his attention to cellular automata. He explored and categorized the types of [[complexity]] displayed by one-dimensional CAs, and showed how they applied to natural phenomena such as the patterns of seashells and the nature of plant growth.
| |
− | | |
− | In 1982, computer scientist named Stephen Wolfram turned his attention to cellular automata. He explored and categorized the types of complexity displayed by one-dimensional CAs, and showed how they applied to natural phenomena such as the patterns of seashells and the nature of plant growth.
| |
− | | |
− | 1982年,计算机科学家斯蒂芬·沃尔夫拉姆(Stephen Wolfram)将他的注意力转向细胞自动机。他探索和分类了一维CAs所显示的复杂性类型,并展示了它们如何应用于自然现象,如贝壳的模式和植物生长的性质。
| |
− | | |
− | [[Norman Packard]], who worked with Wolfram at the [[Institute for Advanced Study]], used CAs to simulate the growth of snowflakes, following very basic rules.
| |
− | | |
− | Norman Packard, who worked with Wolfram at the Institute for Advanced Study, used CAs to simulate the growth of snowflakes, following very basic rules.
| |
− | | |
− | 诺曼·帕卡德(Norman Packard)在高级研究院与沃尔夫拉姆一起工作,他使用CAs来模拟雪花的生长,遵循非常基本的规则。
| |
− | | |
− | | |
− | | |
− | Computer animator [[Craig Reynolds (computer graphics)|Craig Reynolds]] similarly used three simple rules to create recognizable [[Flocking (behavior)|flocking]] behaviour in a [[Boids|computer program]] in 1987 to animate groups of boids. With no top-down programming at all, the boids produced lifelike solutions to evading obstacles placed in their path. [[Computer animation]] has continued to be a key commercial driver of alife research as the creators of [[Film|movie]]s attempt to find more realistic and inexpensive ways to animate natural forms such as plant life, animal movement, hair growth, and complicated organic textures.
| |
− | | |
− | Computer animator Craig Reynolds similarly used three simple rules to create recognizable flocking behaviour in a computer program in 1987 to animate groups of boids. With no top-down programming at all, the boids produced lifelike solutions to evading obstacles placed in their path. Computer animation has continued to be a key commercial driver of alife research as the creators of movies attempt to find more realistic and inexpensive ways to animate natural forms such as plant life, animal movement, hair growth, and complicated organic textures.
| |
− | | |
− | 1987年,计算机动画师克雷格·雷诺兹(Craig Reynolds)同样使用三个简单的规则在一个计算机程序中创建了可识别的群集行为。由于完全没有自顶向下的编程,群集体产生了类似生命体的解决方案,以避开摆在他们道路上的障碍。计算机动画一直是人工生命研究的主要商业驱动力,因为电影的创作者试图寻找更现实和廉价的方式,来使自然形式如植物、动物运动、毛发生长和复杂的有机材质等具有生命力。
| |
− | | |
− | | |
− | | |
− | [[J. Doyne Farmer]] was a key figure in tying artificial life research to the emerging field of [[complex adaptive system]]s, working at the [[Center for Nonlinear Studies]] (a basic research section of [[Los Alamos National Laboratory]]), just as its star chaos theorist [[Mitchell Feigenbaum]] was leaving. Farmer and Norman Packard chaired a conference in May 1985 called "Evolution, Games, and Learning", which was to presage many of the topics of later alife conferences.
| |
− | | |
− | J. Doyne Farmer was a key figure in tying artificial life research to the emerging field of complex adaptive systems, working at the Center for Nonlinear Studies (a basic research section of Los Alamos National Laboratory), just as its star chaos theorist Mitchell Feigenbaum was leaving. Farmer and Norman Packard chaired a conference in May 1985 called "Evolution, Games, and Learning", which was to presage many of the topics of later alife conferences.
| |
− | | |
− | 多恩·法默(J. Doyne Farmer)是将人工生命研究与复杂自适应系统这一新兴领域联系起来的关键人物,他在非线性研究中心(洛斯阿拉莫斯国家实验室的一个基础研究部门)工作,就在其明星混沌理论学家米切尔·费根鲍姆即将离开的时候。1985年5月,法默和诺曼·帕卡德(Norman Packard)主持了一个名为“进化、游戏和学习”的会议,这预示了后来的人工生命会议的许多主题。
| |
− | | |
− | | |
− | | |
− | ==2000s== | |
− | 2000年
| |
| | | |
| On the ecological front, research regarding the evolution of animal cooperative behavior (started by [[W. D. Hamilton]] in the 1960s <ref>Hamilton, W. D. The genetical evolution of social behaviour. I and II. J. Theor. | | On the ecological front, research regarding the evolution of animal cooperative behavior (started by [[W. D. Hamilton]] in the 1960s <ref>Hamilton, W. D. The genetical evolution of social behaviour. I and II. J. Theor. |
第92行: |
第49行: |
| On the ecological front, research regarding the evolution of animal cooperative behavior (started by W. D. Hamilton in the 1960s <ref>Hamilton, W. D. The genetical evolution of social behaviour. I and II. J. Theor. | | On the ecological front, research regarding the evolution of animal cooperative behavior (started by W. D. Hamilton in the 1960s <ref>Hamilton, W. D. The genetical evolution of social behaviour. I and II. J. Theor. |
| | | |
− | 在生态方面,2006年,彼得·图尔钦(Peter Turchin)和米哈伊尔·伯切夫(Mikhail Burtsev)通过人工生命重新引入了关于动物合作行为进化的研究(由上世纪60年代的汉密尔顿(W. D. Hamilton)发起,产生了亲缘选择、互惠、多层次选择和文化群体选择等理论)。
| + | 在生态方面,2006年,[[彼得·图尔钦]](Peter Turchin)和[[米哈伊尔·伯切夫]](Mikhail Burtsev)通过人工生命重新引入了关于动物合作行为进化的研究(由上世纪60年代的汉密尔顿(W. D. Hamilton)发起,产生了亲缘选择、互惠、多层次选择和文化群体选择等理论)。 |
| | | |
| Biol. 7, 1–52 (1964).</ref><ref>Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, | | Biol. 7, 1–52 (1964).</ref><ref>Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, |