在<math>*</math>运算下,递归构型的集合构成一个与约化图拉普拉斯矩阵<math>\Delta'</math>的核同构的阿贝尔群。对于 <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>,其中<math>n</math> 表示顶点数(包括沉没顶点)。更一般地说,稳定构型集(瞬态和循环)在<math>*</math>.运算下形成'''<font color="#ff8000"> 交换幺半群Commutative monoid</font>'''。这个幺半群的最小理想同构于循环构型群。The minimal [[Semigroup#Subsemigroups and ideals|ideal]] of this monoid is then isomorphic to the group of recurrent configurations.
+
在<math>*</math>运算下,递归构型的集合构成一个与约化图拉普拉斯矩阵<math>\Delta'</math>的核同构的阿贝尔群。对于 <math>\mathbf{Z}^{n-1}/\mathbf{Z}^{n-1}\Delta'</math>,其中<math>n</math> 表示顶点数(包括沉没顶点)。更一般地说,稳定构型集(瞬态和循环)在<math>*</math>.运算下形成'''<font color="#ff8000"> 交换幺半群Commutative monoid</font>'''。这个幺半群的最小理想同构于循环构型群。<font color="#ff8000">The minimal [[Semigroup#Subsemigroups and ideals|ideal]] of this monoid is then isomorphic to the group of recurrent configurations.</font>