更改

跳到导航 跳到搜索
添加189字节 、 2020年11月25日 (三) 13:23
无编辑摘要
第1行: 第1行: −
此词条暂由彩云小译翻译,翻译字数共1031,未经人工整理和审校,带来阅读不便,请见谅。
+
本词条由11初步翻译
    
{{Distinguish|Landau principle}}
 
{{Distinguish|Landau principle}}
 +
区别|兰道原则
    
'''Landauer's principle''' is a [[Principle#Principle as scientific law|physical principle]] pertaining to the lower [[Theoretical physics|theoretical]] limit of [[Energy conservation|energy consumption]] of [[computation]]. It holds that "any logically irreversible manipulation of [[Information#As a property in physics|information]], such as the erasure of a [[bit]] or the merging of two [[computation]] paths, must be accompanied by a corresponding [[entropy]] increase in non-information-bearing [[Degrees of freedom (physics and chemistry)|degrees of freedom]] of the information-processing apparatus or its environment".<ref name = bennett>{{Citation |arxiv=physics/0210005 |title=Notes on Landauer's principle, Reversible Computation and Maxwell's Demon |authorlink=Charles H. Bennett (computer scientist) |author=Charles H. Bennett |journal=Studies in History and Philosophy of Modern Physics |volume=34 |issue=3 |pages=501–510 |year=2003 |url=http://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/bennett03.pdf |accessdate=2015-02-18 |doi=10.1016/S1355-2198(03)00039-X|bibcode=2003SHPMP..34..501B |s2cid=9648186 }}</ref>
 
'''Landauer's principle''' is a [[Principle#Principle as scientific law|physical principle]] pertaining to the lower [[Theoretical physics|theoretical]] limit of [[Energy conservation|energy consumption]] of [[computation]]. It holds that "any logically irreversible manipulation of [[Information#As a property in physics|information]], such as the erasure of a [[bit]] or the merging of two [[computation]] paths, must be accompanied by a corresponding [[entropy]] increase in non-information-bearing [[Degrees of freedom (physics and chemistry)|degrees of freedom]] of the information-processing apparatus or its environment".<ref name = bennett>{{Citation |arxiv=physics/0210005 |title=Notes on Landauer's principle, Reversible Computation and Maxwell's Demon |authorlink=Charles H. Bennett (computer scientist) |author=Charles H. Bennett |journal=Studies in History and Philosophy of Modern Physics |volume=34 |issue=3 |pages=501–510 |year=2003 |url=http://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/bennett03.pdf |accessdate=2015-02-18 |doi=10.1016/S1355-2198(03)00039-X|bibcode=2003SHPMP..34..501B |s2cid=9648186 }}</ref>
第7行: 第8行:  
Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of computation. It holds that "any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two computation paths, must be accompanied by a corresponding entropy increase in non-information-bearing degrees of freedom of the information-processing apparatus or its environment".
 
Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of computation. It holds that "any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two computation paths, must be accompanied by a corresponding entropy increase in non-information-bearing degrees of freedom of the information-processing apparatus or its environment".
   −
兰道尔原理是关于计算能量消耗的理论下限的一个物理原理。它认为,”任何逻辑上不可逆的信息操作,例如位的擦除或两个计算路径的合并,必须伴随着信息处理设备或其环境的非信息承载自由度的相应熵增加”。
+
'''<font color="#ff8000"> 兰道尔原则Landauer's principle </font>'''是关于计算能量消耗的理论下限的物理原理。它认为,"对信息的任何逻辑上不可逆转的操作,如删除一个比特或合并两条计算路径,必须伴随着信息处理设备或其环境的非信息承载自由度的相应熵增加"。
 
        第15行: 第15行:  
Another way of phrasing Landauer's principle is that if an observer loses information about a physical system, the observer loses the ability to extract work from that system.
 
Another way of phrasing Landauer's principle is that if an observer loses information about a physical system, the observer loses the ability to extract work from that system.
   −
另一种表述兰道尔原理的方式是,如果一个观察者丢失了有关物理系统的信息,那么这个观察者就失去了从该系统中提取工作的能力。
+
兰道尔原理的另一种表述方式是,如果观察者失去了一个物理系统的信息,观察者就失去了从该系统中提取工作的能力。
 
        第23行: 第22行:  
A so-called logically-reversible computation, in which no information is erased, may in principle be carried out without releasing any heat.  This has led to considerable interest in the study of reversible computing. Indeed, without reversible computing, increases in the number of computations-per-joule-of-energy-dissipated must come to a halt by about 2050: because the limit implied by Landauer's principle will be reached by then, according to Koomey's law.  
 
A so-called logically-reversible computation, in which no information is erased, may in principle be carried out without releasing any heat.  This has led to considerable interest in the study of reversible computing. Indeed, without reversible computing, increases in the number of computations-per-joule-of-energy-dissipated must come to a halt by about 2050: because the limit implied by Landauer's principle will be reached by then, according to Koomey's law.  
   −
一个所谓的逻辑可逆计算,其中没有信息擦除,原则上可以进行不释放任何热量。这使得人们对可逆计算的研究产生了浓厚的兴趣。事实上,如果没有可逆计算,到2050年左右,耗散的计算数量——每焦耳的能量——的增加必须停止: 因为根据 Koomey 定律,到那时,Landauer 原理所暗示的极限将达到。
+
所谓逻辑上可逆的计算,即不删除任何信息的计算,原则上可以在不释放任何热量的情况下进行。 这引起了人们对可逆计算研究的极大兴趣。事实上,如果没有可逆计算,到2050年左右,每焦耳耗能计算次数的增加必须停止:因为根据'''<font color="#ff8000"> 库米定律Koomey's law </font>''',届时将达到兰道尔原理所暗示的极限。
 
        第31行: 第29行:  
At 20&nbsp;°C (room temperature, or 293.15&nbsp;K), the Landauer limit represents an energy of approximately 0.0175&nbsp;eV, or 2.805&nbsp;zJ. Theoretically, roomtemperature computer memory operating at the Landauer limit could be changed at a rate of one billion bits per second (1Gbps) with energy being converted to heat in the memory media at the rate of only 2.805 trillionths of a watt (that is, at a rate of only 2.805 pJ/s).  Modern computers use millions of times as much energy per second.
 
At 20&nbsp;°C (room temperature, or 293.15&nbsp;K), the Landauer limit represents an energy of approximately 0.0175&nbsp;eV, or 2.805&nbsp;zJ. Theoretically, roomtemperature computer memory operating at the Landauer limit could be changed at a rate of one billion bits per second (1Gbps) with energy being converted to heat in the memory media at the rate of only 2.805 trillionths of a watt (that is, at a rate of only 2.805 pJ/s).  Modern computers use millions of times as much energy per second.
   −
在20 ° c (室温,或293.15 k)时,兰道尔极限表示大约0.0175 eV,或2.805 zJ 的能量。理论上,在兰道尔极限下工作的房间温度计算机存储器可以以每秒10亿比特(1gbps)的速度改变,能量在存储介质中以仅2.805万亿分之一瓦特的速度转化为热量(也就是说,只以2.805 pJ/s 的速度)。现代计算机每秒钟要消耗数百万倍的能量。
+
在20 ° c (室温,或293.15 k)时,兰道尔极限表示大约0.0175 eV,或2.805 zJ 的能量。理论上,在兰道尔极限下工作的房间温度计算机存储器可以以每秒10亿比特(1gbps)的速度改变,能量在存储介质中以仅2.805万亿分之一瓦特的速度转化为热量(也就是说,只以2.805 pJ/s 的速度)。现代计算机每秒消耗的能量是其数百万倍。
 
         
==History==
 
==History==
 +
历史
    
[[Rolf Landauer]] first proposed the principle in 1961 while working at [[IBM]].<ref name="landauer">{{Citation |author=Rolf Landauer |url=http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf |title=Irreversibility and heat generation in the computing process |journal=IBM Journal of Research and Development |volume=5 |issue=3 |pages=183–191 |year=1961 |accessdate=2015-02-18 |doi=10.1147/rd.53.0183 }}</ref> He justified and stated important limits to an earlier conjecture by [[John von Neumann]]. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit.
 
[[Rolf Landauer]] first proposed the principle in 1961 while working at [[IBM]].<ref name="landauer">{{Citation |author=Rolf Landauer |url=http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf |title=Irreversibility and heat generation in the computing process |journal=IBM Journal of Research and Development |volume=5 |issue=3 |pages=183–191 |year=1961 |accessdate=2015-02-18 |doi=10.1147/rd.53.0183 }}</ref> He justified and stated important limits to an earlier conjecture by [[John von Neumann]]. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit.
第41行: 第39行:  
Rolf Landauer first proposed the principle in 1961 while working at IBM. He justified and stated important limits to an earlier conjecture by John von Neumann. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit.
 
Rolf Landauer first proposed the principle in 1961 while working at IBM. He justified and stated important limits to an earlier conjecture by John von Neumann. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit.
   −
罗尔夫 · 兰道尔于1961年在 IBM 工作时首次提出了这一原则。他证明并陈述了早期约翰·冯·诺伊曼的一个猜想的重要限度。由于这个原因,它有时被简单地称为兰道尔极限或兰道尔极限。
+
罗尔夫·兰道尔于1961年在IBM工作时首次提出了这一原则。他证明并陈述了早期约翰·冯·诺伊曼的一个猜想的重要极限。因此,它有时被简单地称为兰道尔极限。
      第49行: 第47行:  
In 2011, the principle was generalized to show that while information erasure requires an increase in entropy, that increase could theoretically occur at no energy cost. Instead, the cost can be taken in another conserved quantity, such as angular momentum.
 
In 2011, the principle was generalized to show that while information erasure requires an increase in entropy, that increase could theoretically occur at no energy cost. Instead, the cost can be taken in another conserved quantity, such as angular momentum.
   −
在2011年,这个原理被推广到表明,虽然消除信息需要增加熵,但理论上这种增加可以在没有能源成本的情况下发生。相反,成本可以在另一个守恆量承担,比如角动量。
+
2011年,该原理被普遍化,表明虽然信息擦除需要熵的增加,但理论上这种增加可以在没有能量成本的情况下发生。相反,成本可以用另一个守恒量,如角动量来计算。
      第57行: 第55行:  
In a 2012 article published in Nature, a team of physicists from the École normale supérieure de Lyon, University of Augsburg and the University of Kaiserslautern described that for the first time they have measured the tiny amount of heat released when an individual bit of data is erased.
 
In a 2012 article published in Nature, a team of physicists from the École normale supérieure de Lyon, University of Augsburg and the University of Kaiserslautern described that for the first time they have measured the tiny amount of heat released when an individual bit of data is erased.
   −
在2012年发表在《自然》杂志上的一篇文章中,来自里昂高等师范学校、奥格斯堡大学和 Kaiserslautern 大学的一组物理学家描述说,他们首次测量了单个数据被擦除时释放的微量热量。
+
在2012年发表在《自然》杂志上的一篇文章中,来自里昂高等师范学校、奥格斯堡大学和凯泽斯劳滕大学的物理学家团队描述说,他们首次测量到了当单个数据位被擦除时释放的微小热量。
 
        第65行: 第62行:  
In 2014, physical experiments tested Landauer's principle and confirmed its predictions.
 
In 2014, physical experiments tested Landauer's principle and confirmed its predictions.
   −
2014年,物理实验验证了兰道尔的原理,并证实了其预测。
+
2014年,物理实验验证了兰道尔原理,并证实了其预测。
      第73行: 第70行:  
In 2016, researchers used a laser probe to measure the amount of energy dissipation that resulted when a nanomagnetic bit flipped from off to on. Flipping the bit required 26 millielectron volts (4.2 zeptojoules).
 
In 2016, researchers used a laser probe to measure the amount of energy dissipation that resulted when a nanomagnetic bit flipped from off to on. Flipping the bit required 26 millielectron volts (4.2 zeptojoules).
   −
2016年,研究人员使用激光探测器测量了纳米磁位从关闭到打开时所产生的能量耗散量。翻转钻头需要26毫电子伏(4.2 zeptojoules)。
+
2016年,研究人员使用激光探针测量了纳米磁性位从关到开时产生的能量耗散量。翻转位子需要26毫电子伏特(4.2泽普焦耳)。
 
        第81行: 第77行:  
A 2018 article published in Nature Physics features a Landauer erasure performed at cryogenic temperatures (T = 1K) on an array of high-spin (S = 10) quantum molecular magnets. The array is made to act as a spin register where each nanomagnet encodes a single bit of information.
 
A 2018 article published in Nature Physics features a Landauer erasure performed at cryogenic temperatures (T = 1K) on an array of high-spin (S = 10) quantum molecular magnets. The array is made to act as a spin register where each nanomagnet encodes a single bit of information.
   −
2018年发表在《自然物理学》上的一篇文章描述了在低温(t = 1K)下对一排高自旋(s = 10)量子分子磁体进行的兰道尔擦除(Landauer erasure)。该阵列作为一个自旋寄存器,每个纳米粒子网编码一位信息。
+
2018年发表在《自然物理学》上的一篇文章描述了在低温(T = 1K)下对一排高自旋(S = 10)量子分子磁体进行的兰道尔擦除(Landauer erasure)。该阵列作为自旋寄存器,每个纳米粒子网编码一位信息。
          
==Rationale==
 
==Rationale==
 +
基本原理
    
Landauer's principle can be understood to be a simple [[logical consequence]] of the [[second law of thermodynamics]]—which states that the entropy of an [[isolated system]] cannot decrease—together with the definition of [[thermodynamic temperature]]. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased).
 
Landauer's principle can be understood to be a simple [[logical consequence]] of the [[second law of thermodynamics]]—which states that the entropy of an [[isolated system]] cannot decrease—together with the definition of [[thermodynamic temperature]]. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased).
第91行: 第88行:  
Landauer's principle can be understood to be a simple logical consequence of the second law of thermodynamics—which states that the entropy of an isolated system cannot decrease—together with the definition of thermodynamic temperature. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased).
 
Landauer's principle can be understood to be a simple logical consequence of the second law of thermodynamics—which states that the entropy of an isolated system cannot decrease—together with the definition of thermodynamic temperature. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased).
   −
的原理可以理解为热力学第二定律的一个简单蕴涵---- 该定律指出孤立系统的熵不能减少---- 与热力学温度的定义一起。因为,如果一个计算的可能逻辑状态的数量随着计算的进行而减少(逻辑不可逆性) ,这将构成熵的禁止减少,除非每个逻辑状态对应的可能物理状态的数量同时增加至少一个补偿量,以使可能的物理状态的总数不小于原来的数量(即:。总熵没有减少)。
+
兰道尔的原则可以理解为热力学第二定律的一个简单的逻辑后果--该定律指出,一个孤立系统的熵不能与热力学温度的定义一起减少。因为,如果一个计算的可能逻辑状态的数目随着计算的进行而减少(逻辑的不可逆性),这将构成熵的被禁止的减少,除非与每个逻辑状态相对应的可能物理状态的数目同时增加至少一个补偿量,从而使可能物理状态的总数不比原来少(即总熵没有减少)。
 
        第107行: 第103行:  
The maximum entropy of a bounded physical system is finite. (If the holographic principle is correct, then physical systems with finite surface area have a finite maximum entropy; but regardless of the truth of the holographic principle, quantum field theory dictates that the entropy of systems with finite radius and energy is finite due to the Bekenstein bound.) To avoid reaching this maximum over the course of an extended computation, entropy must eventually be expelled to an outside environment.
 
The maximum entropy of a bounded physical system is finite. (If the holographic principle is correct, then physical systems with finite surface area have a finite maximum entropy; but regardless of the truth of the holographic principle, quantum field theory dictates that the entropy of systems with finite radius and energy is finite due to the Bekenstein bound.) To avoid reaching this maximum over the course of an extended computation, entropy must eventually be expelled to an outside environment.
   −
有界物理系统的最大熵是有限的。(如果全息原理理论是正确的,那么有限表面积的物理系统有一个有限的最大熵; 但是不管全息原理理论是否正确,量子场理论指出,有限半径和能量的系统的熵是有限的,这是由于贝肯斯坦上限的存在。)为了避免在扩展计算过程中达到这个最大值,熵最终必须被驱逐到外部环境中。
+
有界物理系统的最大熵是有限的。(如果全息原理理论是正确的,那么有限表面积的物理系统的最大熵是有限的; 但是不管全息原理理论是否正确,量子场理论指出,由于贝肯斯坦约束,半径和能量有限的系统的熵是有限的。)为了避免在扩展计算过程中达到这个最大值,熵最终必须被驱逐到外部环境中。
          
==Equation==
 
==Equation==
 +
平衡
    
Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the ''Landauer limit'':
 
Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the ''Landauer limit'':
第117行: 第114行:  
Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the Landauer limit:
 
Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the Landauer limit:
   −
兰道尔原理断言,删除一点信息所需要的能量是最小的,这就是兰道尔极限:
+
兰道尔原理断言,擦除一个信息位所需的能量是最小的,称为兰道尔极限。
 
        第133行: 第129行:  
where <math>k_\text{B}</math> is the Boltzmann constant (approximately 1.38×10<sup>−23</sup> J/K), <math>T</math> is the temperature of the heat sink in kelvins, and <math>\ln 2</math> is the natural logarithm of 2 (approximately 0.69315). After setting T equal to room temperature 20&nbsp;°C (293.15&nbsp;K), we can get the Landauer limit of 0.0175&nbsp;eV (2.805&nbsp;zJ) per bit erased.
 
where <math>k_\text{B}</math> is the Boltzmann constant (approximately 1.38×10<sup>−23</sup> J/K), <math>T</math> is the temperature of the heat sink in kelvins, and <math>\ln 2</math> is the natural logarithm of 2 (approximately 0.69315). After setting T equal to room temperature 20&nbsp;°C (293.15&nbsp;K), we can get the Landauer limit of 0.0175&nbsp;eV (2.805&nbsp;zJ) per bit erased.
   −
其中,k text { b } </math > 是波兹曼常数(大约1.38 × 10 < sup >-23 </sup > J/K) ,t </math > 是科尔文散热器的温度,而 < math > ln 2 </math > 是2的自然对数(大约0.69315)。设置 t 为室温20 ° c (293.15 k)后,可以得到每位擦除0.0175 eV (2.805 zJ)的朗道尔极限。
+
其中,K text { b } </math > 是波兹曼常数(大约1.38 × 10 < sup >-23 </sup > J/K) ,T </math > 是散热器的温度,单位为开尔文,而 < math > ln 2 </math > 是2的自然对数(大约0.69315)。设 T 为室温20 ° c (293.15 k)后,可以得到每位擦除0.0175 eV (2.805 zJ)的朗道尔极限。
      第141行: 第137行:  
For an environment at temperature T, energy E = ST must be emitted into that environment if the amount of added entropy is S. For a computational operation in which 1 bit of logical information is lost, the amount of entropy generated is at least k<sub>B</sub> ln&#8239;2, and so, the energy that must eventually be emitted to the environment is E ≥ k<sub>B</sub>T ln&#8239;2.
 
For an environment at temperature T, energy E = ST must be emitted into that environment if the amount of added entropy is S. For a computational operation in which 1 bit of logical information is lost, the amount of entropy generated is at least k<sub>B</sub> ln&#8239;2, and so, the energy that must eventually be emitted to the environment is E ≥ k<sub>B</sub>T ln&#8239;2.
   −
对于一个温度为 t 的环境,如果附加熵的量为 s,则能量 e = ST 必须被发射到该环境中。对于一个计算操作,其中丢失了1位逻辑信息,所产生的熵至少为 k < sub > b </sub > ln & # 8239; 2,因此,最终发射到环境中的能量为 e ≥ k < sub > b </sub > t ln & # 8239; 2。
+
对于温度为T的环境,如果增加的熵量为S,则必须向该环境放出能量E=ST,对于丢失1位逻辑信息的计算操作,产生的熵量至少为k<sub>B</sub>ln&#8239;2,所以,最终必须向环境放出的能量为E≥k<sub>B</sub>T ln&#8239;2。
 
         
==Challenges==
 
==Challenges==
 +
挑战
    
The principle is widely accepted as [[physical law]], but in recent years it has been challenged for using [[circular reasoning]] and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000)<ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref> and Norton (2004,<ref name="norton">[http://philsci-archive.pitt.edu/archive/00001729/ Eaters of the Lotus] Critique by John Norton (2004)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011)</ref>), and defended by Bennett (2003),<ref name="bennett" /> Ladyman et al. (2007),<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref> and by Jordan and Manikandan (2019).<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>
 
The principle is widely accepted as [[physical law]], but in recent years it has been challenged for using [[circular reasoning]] and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000)<ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref> and Norton (2004,<ref name="norton">[http://philsci-archive.pitt.edu/archive/00001729/ Eaters of the Lotus] Critique by John Norton (2004)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011)</ref>), and defended by Bennett (2003),<ref name="bennett" /> Ladyman et al. (2007),<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref> and by Jordan and Manikandan (2019).<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>
第151行: 第147行:  
The principle is widely accepted as physical law, but in recent years it has been challenged for using circular reasoning and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000) and Norton (2004, 2011), and defended by Bennett (2003), and by Jordan and Manikandan (2019).
 
The principle is widely accepted as physical law, but in recent years it has been challenged for using circular reasoning and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000) and Norton (2004, 2011), and defended by Bennett (2003), and by Jordan and Manikandan (2019).
   −
这一原则被广泛接受为物理定律,但近年来,它因使用循环推理和错误假设而受到挑战,尤其是在厄尔曼和诺顿(1998年) ,随后在申克(2000年)和诺顿(2004年,2011年) ,贝内特(2003年)和约旦和马尼坎达(2019年)为之辩护。
+
这一原则被广泛接受为物理定律,但近年来,它因使用循环推理和错误假设而受到挑战,尤其是厄尔曼和诺顿(1998年) ,随后是申克(2000年)和诺顿(2004年,2011年) ,贝内特(2003年)和约旦和马尼坎达(2019年)为之辩护。
      第159行: 第155行:  
On the other hand, recent advances in non-equilibrium statistical physics have established that there is no a priori relationship between logical and thermodynamic reversibility. It is possible that a physical process is logically reversible but thermodynamically irreversible. It is also possible that a physical process is logically irreversible but thermodynamically reversible. At best, the benefits of implementing a computation with a logically reversible systems are nuanced.
 
On the other hand, recent advances in non-equilibrium statistical physics have established that there is no a priori relationship between logical and thermodynamic reversibility. It is possible that a physical process is logically reversible but thermodynamically irreversible. It is also possible that a physical process is logically irreversible but thermodynamically reversible. At best, the benefits of implementing a computation with a logically reversible systems are nuanced.
   −
另一方面,非平衡统计物理学的最新进展表明,逻辑可逆性和热力学可逆性之间不存在先验关系。物理过程在逻辑上是可逆的,但在热力学上是不可逆的,这是可能的。物理过程在逻辑上是不可逆的,但在热力学上是可逆的,这也是可能的。充其量,使用逻辑可逆的系统实现计算的好处是微妙的。
+
另一方面,非平衡统计物理学的最新进展已经确定,逻辑可逆性和热力学可逆性之间不存在先验关系。一个物理过程有可能在逻辑上是可逆的,但在热力学上是不可逆的。也有可能一个物理过程在逻辑上是不可逆的,但在热力学上是可逆的。用逻辑上可逆的系统进行计算的好处极其微小。
 
        第172行: 第167行:     
==See also==
 
==See also==
 +
请参阅
    
* [[Margolus–Levitin theorem]]
 
* [[Margolus–Levitin theorem]]
 +
Margolus-Levitin定理
    
* [[Bremermann's limit]]
 
* [[Bremermann's limit]]
 +
布雷曼极限
    
* [[Bekenstein bound]]
 
* [[Bekenstein bound]]
 +
贝肯斯坦约束
    
* [[Kolmogorov complexity]]
 
* [[Kolmogorov complexity]]
 +
Kolmogorov复杂性
    
* [[Entropy in thermodynamics and information theory]]
 
* [[Entropy in thermodynamics and information theory]]
 +
热力学和信息理论中的熵
    
* [[Information theory]]
 
* [[Information theory]]
 +
信息理论
    
* [[Jarzynski equality]]
 
* [[Jarzynski equality]]
 +
Jarzynski恒等式
 +
    
* [[Limits to computation]]
 
* [[Limits to computation]]
 +
计算限制
    
* [[Extended mind thesis]]
 
* [[Extended mind thesis]]
 +
扩展思维理论
    
* [[Maxwell's demon]]
 
* [[Maxwell's demon]]
 +
麦克斯韦妖
    
*[[Koomey's law|Koomey's Law]]
 
*[[Koomey's law|Koomey's Law]]
 
+
库米定律
       
==References==
 
==References==
 +
参考
    
{{reflist}}
 
{{reflist}}
第204行: 第212行:     
==Further reading==
 
==Further reading==
 +
进一步阅读
    
*{{citation| author1-first= Mikhail | author1-last= Prokopenko | author2-first=Joseph T. | author2-last= Lizier | title= Transfer entropy and transient limits of computation | journal= [[Scientific Reports]] | date= 2014 | volume=4  | page= 5394 | doi= 10.1038/srep05394| pmid= 24953547 | bibcode= 2014NatSR...4E5394P | pmc= 4066251 }}
 
*{{citation| author1-first= Mikhail | author1-last= Prokopenko | author2-first=Joseph T. | author2-last= Lizier | title= Transfer entropy and transient limits of computation | journal= [[Scientific Reports]] | date= 2014 | volume=4  | page= 5394 | doi= 10.1038/srep05394| pmid= 24953547 | bibcode= 2014NatSR...4E5394P | pmc= 4066251 }}
第210行: 第219行:     
==External links==
 
==External links==
 +
外部链接
    
{{Library resources box}}
 
{{Library resources box}}
 +
图书馆资源盒
     
58

个编辑

导航菜单