第1行: |
第1行: |
− | 本词条由11初步翻译
| + | 本词条由11初步翻译,由Flipped完成审校。 |
| | | |
| {{Distinguish|Landau principle}} | | {{Distinguish|Landau principle}} |
− | 区别|兰道原则 | + | 区别|兰道原理 |
| | | |
| '''Landauer's principle''' is a [[Principle#Principle as scientific law|physical principle]] pertaining to the lower [[Theoretical physics|theoretical]] limit of [[Energy conservation|energy consumption]] of [[computation]]. It holds that "any logically irreversible manipulation of [[Information#As a property in physics|information]], such as the erasure of a [[bit]] or the merging of two [[computation]] paths, must be accompanied by a corresponding [[entropy]] increase in non-information-bearing [[Degrees of freedom (physics and chemistry)|degrees of freedom]] of the information-processing apparatus or its environment".<ref name = bennett>{{Citation |arxiv=physics/0210005 |title=Notes on Landauer's principle, Reversible Computation and Maxwell's Demon |authorlink=Charles H. Bennett (computer scientist) |author=Charles H. Bennett |journal=Studies in History and Philosophy of Modern Physics |volume=34 |issue=3 |pages=501–510 |year=2003 |url=http://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/bennett03.pdf |accessdate=2015-02-18 |doi=10.1016/S1355-2198(03)00039-X|bibcode=2003SHPMP..34..501B |s2cid=9648186 }}</ref> | | '''Landauer's principle''' is a [[Principle#Principle as scientific law|physical principle]] pertaining to the lower [[Theoretical physics|theoretical]] limit of [[Energy conservation|energy consumption]] of [[computation]]. It holds that "any logically irreversible manipulation of [[Information#As a property in physics|information]], such as the erasure of a [[bit]] or the merging of two [[computation]] paths, must be accompanied by a corresponding [[entropy]] increase in non-information-bearing [[Degrees of freedom (physics and chemistry)|degrees of freedom]] of the information-processing apparatus or its environment".<ref name = bennett>{{Citation |arxiv=physics/0210005 |title=Notes on Landauer's principle, Reversible Computation and Maxwell's Demon |authorlink=Charles H. Bennett (computer scientist) |author=Charles H. Bennett |journal=Studies in History and Philosophy of Modern Physics |volume=34 |issue=3 |pages=501–510 |year=2003 |url=http://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/bennett03.pdf |accessdate=2015-02-18 |doi=10.1016/S1355-2198(03)00039-X|bibcode=2003SHPMP..34..501B |s2cid=9648186 }}</ref> |
第8行: |
第8行: |
| Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of computation. It holds that "any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two computation paths, must be accompanied by a corresponding entropy increase in non-information-bearing degrees of freedom of the information-processing apparatus or its environment". | | Landauer's principle is a physical principle pertaining to the lower theoretical limit of energy consumption of computation. It holds that "any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two computation paths, must be accompanied by a corresponding entropy increase in non-information-bearing degrees of freedom of the information-processing apparatus or its environment". |
| | | |
− | '''<font color="#ff8000"> 兰道尔原则Landauer's principle </font>'''是关于计算能量消耗的理论下限的物理原理。它认为,"对信息的任何逻辑上不可逆转的操作,如删除一个比特或合并两条计算路径,必须伴随着信息处理设备或其环境的非信息承载自由度的相应熵增加"。 | + | '''<font color="#ff8000"> 兰道尔原理 Landauer's principle </font>'''是计算能量消耗的理论下限的物理原理。它认为,"任何逻辑上不可逆转的信息操作过程,如擦除一个比特的信息或合并两条计算路径,一定伴随着信息存储载体或其外部环境以外自由度的相应熵增加"。<ref name = bennett>{{Citation |arxiv=physics/0210005 |title=Notes on Landauer's principle, Reversible Computation and Maxwell's Demon |authorlink=Charles H. Bennett (computer scientist) |author=Charles H. Bennett |journal=Studies in History and Philosophy of Modern Physics |volume=34 |issue=3 |pages=501–510 |year=2003 |url=http://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/bennett03.pdf |accessdate=2015-02-18 |doi=10.1016/S1355-2198(03)00039-X|bibcode=2003SHPMP..34..501B |s2cid=9648186 }}</ref> |
| | | |
| + | --[[用户:Flipped| Flipped]]([[用户讨论: Flipped |讨论]])non-information-bearing |
| | | |
| Another way of phrasing Landauer's principle is that if an observer loses information about a [[physical system]], the observer loses the ability to extract work from that system. | | Another way of phrasing Landauer's principle is that if an observer loses information about a [[physical system]], the observer loses the ability to extract work from that system. |
第22行: |
第23行: |
| A so-called logically-reversible computation, in which no information is erased, may in principle be carried out without releasing any heat. This has led to considerable interest in the study of reversible computing. Indeed, without reversible computing, increases in the number of computations-per-joule-of-energy-dissipated must come to a halt by about 2050: because the limit implied by Landauer's principle will be reached by then, according to Koomey's law. | | A so-called logically-reversible computation, in which no information is erased, may in principle be carried out without releasing any heat. This has led to considerable interest in the study of reversible computing. Indeed, without reversible computing, increases in the number of computations-per-joule-of-energy-dissipated must come to a halt by about 2050: because the limit implied by Landauer's principle will be reached by then, according to Koomey's law. |
| | | |
− | 所谓逻辑上可逆的计算,即不删除任何信息的计算,原则上可以在不释放任何热量的情况下进行。 这引起了人们对可逆计算研究的极大兴趣。事实上,如果没有可逆计算,到2050年左右,每焦耳耗能计算次数的增加必须停止:因为根据'''<font color="#ff8000"> 库米定律Koomey's law </font>''',届时将达到兰道尔原理所暗示的极限。
| + | 所谓逻辑上可逆的计算,即不擦除任何信息,原则上可以在不释放任何热量的情况下进行。 这引起了人们对'''<font color="#ff8000"> 可逆计算 reversible computing </font>'''研究的极大兴趣。事实上,如果没有可逆计算,到2050年左右,每单位能量消耗的计算量的增加必须停止:因为根据'''<font color="#ff8000"> 库米定律Koomey's law </font>''',届时将达到兰道尔原理所暗示的极限。 |
| | | |
| | | |
第29行: |
第30行: |
| At 20 °C (room temperature, or 293.15 K), the Landauer limit represents an energy of approximately 0.0175 eV, or 2.805 zJ. Theoretically, roomtemperature computer memory operating at the Landauer limit could be changed at a rate of one billion bits per second (1Gbps) with energy being converted to heat in the memory media at the rate of only 2.805 trillionths of a watt (that is, at a rate of only 2.805 pJ/s). Modern computers use millions of times as much energy per second. | | At 20 °C (room temperature, or 293.15 K), the Landauer limit represents an energy of approximately 0.0175 eV, or 2.805 zJ. Theoretically, roomtemperature computer memory operating at the Landauer limit could be changed at a rate of one billion bits per second (1Gbps) with energy being converted to heat in the memory media at the rate of only 2.805 trillionths of a watt (that is, at a rate of only 2.805 pJ/s). Modern computers use millions of times as much energy per second. |
| | | |
− | 在20 ° c (室温,或293.15 k)时,兰道尔极限表示大约0.0175 eV,或2.805 zJ 的能量。理论上,在兰道尔极限下工作的房间温度计算机存储器可以以每秒10亿比特(1gbps)的速度改变,能量在存储介质中以仅2.805万亿分之一瓦特的速度转化为热量(也就是说,只以2.805 pJ/s 的速度)。现代计算机每秒消耗的能量是其数百万倍。 | + | 在20 ° c (室温,或293.15 k)时,兰道尔极限表示大约0.0175 eV,或2.805 zJ 的能量。理论上,在兰道尔极限下工作的房间温度计算机存储器可以以每秒10亿比特(1gbps)的速度改变,能量在存储介质中以仅2.805万亿分之一瓦特的速度转化为热量(也就是说,只以2.805 pJ/s 的速度)。现代计算机每秒消耗的能量是其数百万倍。<ref>{{cite web|url=http://tikalon.com/blog/blog.php?article=2011/Landauer |title=Tikalon Blog by Dev Gualtieri |publisher=Tikalon.com |date= |accessdate=May 5, 2013}}</ref><ref>{{cite web|url=http://www.bloomweb.com/nanomagnet-memories-approach-low-power-limit/ |title=Nanomagnet memories approach low-power limit | bloomfield knoble |publisher=Bloomweb.com |date= |accessdate=May 5, 2013|archive-url=https://web.archive.org/web/20141219043239/http://www.bloomfieldknoble.com/nanomagnet-memories-approach-low-power-limit/ |archive-date=December 19, 2014 |url-status=dead}}</ref><ref>{{cite web|url=https://spectrum.ieee.org/computing/hardware/landauer-limit-demonstrated |title=Landauer Limit Demonstrated - IEEE Spectrum |publisher=Spectrum.ieee.org |date= |accessdate=May 5, 2013}}</ref> |
| | | |
| | | |
− | ==History== | + | ==History 历史== |
− | 历史
| + | |
| | | |
| [[Rolf Landauer]] first proposed the principle in 1961 while working at [[IBM]].<ref name="landauer">{{Citation |author=Rolf Landauer |url=http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf |title=Irreversibility and heat generation in the computing process |journal=IBM Journal of Research and Development |volume=5 |issue=3 |pages=183–191 |year=1961 |accessdate=2015-02-18 |doi=10.1147/rd.53.0183 }}</ref> He justified and stated important limits to an earlier conjecture by [[John von Neumann]]. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit. | | [[Rolf Landauer]] first proposed the principle in 1961 while working at [[IBM]].<ref name="landauer">{{Citation |author=Rolf Landauer |url=http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf |title=Irreversibility and heat generation in the computing process |journal=IBM Journal of Research and Development |volume=5 |issue=3 |pages=183–191 |year=1961 |accessdate=2015-02-18 |doi=10.1147/rd.53.0183 }}</ref> He justified and stated important limits to an earlier conjecture by [[John von Neumann]]. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit. |
第39行: |
第40行: |
| Rolf Landauer first proposed the principle in 1961 while working at IBM. He justified and stated important limits to an earlier conjecture by John von Neumann. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit. | | Rolf Landauer first proposed the principle in 1961 while working at IBM. He justified and stated important limits to an earlier conjecture by John von Neumann. For this reason, it is sometimes referred to as being simply the Landauer bound or Landauer limit. |
| | | |
− | 罗尔夫·兰道尔于1961年在IBM工作时首次提出了这一原则。他证明并陈述了早期约翰·冯·诺伊曼的一个猜想的重要极限。因此,它有时被简单地称为兰道尔极限。
| + | 罗尔夫·兰道尔 Rolf Landauer于1961年在[[IBM]]工作时首次提出了这一原理。<ref name="landauer">{{Citation |author=Rolf Landauer |url=http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf |title=Irreversibility and heat generation in the computing process |journal=IBM Journal of Research and Development |volume=5 |issue=3 |pages=183–191 |year=1961 |accessdate=2015-02-18 |doi=10.1147/rd.53.0183 }}</ref>他证明并陈述了约翰·冯·诺伊曼 John von Neumann的一个早期猜想的重要极限。因此,它有时被简单地称为兰道尔边界或兰道尔极限。 |
| | | |
| | | |
第47行: |
第48行: |
| In 2011, the principle was generalized to show that while information erasure requires an increase in entropy, that increase could theoretically occur at no energy cost. Instead, the cost can be taken in another conserved quantity, such as angular momentum. | | In 2011, the principle was generalized to show that while information erasure requires an increase in entropy, that increase could theoretically occur at no energy cost. Instead, the cost can be taken in another conserved quantity, such as angular momentum. |
| | | |
− | 2011年,该原理被普遍化,表明虽然信息擦除需要熵的增加,但理论上这种增加可以在没有能量成本的情况下发生。相反,成本可以用另一个守恒量,如角动量来计算。
| + | 2011年,该原理被普遍化,表明信息擦除虽然需要熵的增加,但理论上这种增加可以在没有能量成本的情况下发生。<ref name="vaccaro">{{Citation |author1=Joan Vaccaro |author2=Stephen Barnett |title=Information Erasure Without an Energy Cost |journal=Proc. R. Soc. A |date=June 8, 2011 |volume=467 |issue=2130 |pages=1770–1778 |doi=10.1098/rspa.2010.0577 |arxiv=1004.5330|bibcode = 2011RSPSA.467.1770V |s2cid=11768197 }}</ref>相反,成本可以用另一个'''<font color="#ff8000"> 守恒量 conserved quantity </font>''',如'''<font color="#ff8000"> 角动量 angular momentum </font>'''来计算。 |
| | | |
| | | |
第55行: |
第56行: |
| In a 2012 article published in Nature, a team of physicists from the École normale supérieure de Lyon, University of Augsburg and the University of Kaiserslautern described that for the first time they have measured the tiny amount of heat released when an individual bit of data is erased. | | In a 2012 article published in Nature, a team of physicists from the École normale supérieure de Lyon, University of Augsburg and the University of Kaiserslautern described that for the first time they have measured the tiny amount of heat released when an individual bit of data is erased. |
| | | |
− | 在2012年发表在《自然》杂志上的一篇文章中,来自里昂高等师范学校、奥格斯堡大学和凯泽斯劳滕大学的物理学家团队描述说,他们首次测量到了当单个数据位被擦除时释放的微小热量。
| + | 在2012年发表在[[《自然》]]杂志上的一篇文章中,来自里昂高等师范学校 École normale supérieure de Lyon、奥格斯堡大学 University of Augsburg和凯泽斯劳滕大学 University of Kaiserslautern的物理学家团队描述说,他们首次测量到了当单个数据位被擦除时释放的微小热量。 |
| | | |
| | | |
第62行: |
第63行: |
| In 2014, physical experiments tested Landauer's principle and confirmed its predictions. | | In 2014, physical experiments tested Landauer's principle and confirmed its predictions. |
| | | |
− | 2014年,物理实验验证了兰道尔原理,并证实了其预测。 | + | 2014年,物理实验验证了兰道尔原理,并证实了其预测。<ref name="jun">{{Citation |author1=Yonggun Jun |author2=Momčilo Gavrilov |author3=John Bechhoefer |title=High-Precision Test of Landauer's Principle in a Feedback Trap |journal=[[Phys. Rev. Lett.|Physical Review Letters]] |volume=113 |issue=19 |page=190601 |date=4 November 2014 |doi=10.1103/PhysRevLett.113.190601 |pmid=25415891 |arxiv=1408.5089 |bibcode = 2014PhRvL.113s0601J |s2cid=10164946 }}</ref> |
| | | |
| | | |
第70行: |
第71行: |
| In 2016, researchers used a laser probe to measure the amount of energy dissipation that resulted when a nanomagnetic bit flipped from off to on. Flipping the bit required 26 millielectron volts (4.2 zeptojoules). | | In 2016, researchers used a laser probe to measure the amount of energy dissipation that resulted when a nanomagnetic bit flipped from off to on. Flipping the bit required 26 millielectron volts (4.2 zeptojoules). |
| | | |
− | 2016年,研究人员使用激光探针测量了纳米磁性位从关到开时产生的能量耗散量。翻转位子需要26毫电子伏特(4.2泽普焦耳)。
| + | 2016年,研究人员使用激光探针测量了纳米磁性位从关到开时产生的能量耗散量。翻转该磁性位需要26毫电子伏特(4.2泽普焦耳)。<ref>{{Cite journal|last1 = Hong|first1 = Jeongmin|last2 = Lambson|first2 = Brian|last3 = Dhuey|first3 = Scott|last4 = Bokor|first4 = Jeffrey|date = 2016-03-01|title = Experimental test of Landauer's principle in single-bit operations on nanomagnetic memory bits|journal = Science Advances|language = en|volume = 2|issue = 3|pages = e1501492|doi = 10.1126/sciadv.1501492|issn = 2375-2548|pmc = 4795654|bibcode = 2016SciA....2E1492H|pmid=26998519}}</ref> |
| | | |
| | | |
第77行: |
第78行: |
| A 2018 article published in Nature Physics features a Landauer erasure performed at cryogenic temperatures (T = 1K) on an array of high-spin (S = 10) quantum molecular magnets. The array is made to act as a spin register where each nanomagnet encodes a single bit of information. | | A 2018 article published in Nature Physics features a Landauer erasure performed at cryogenic temperatures (T = 1K) on an array of high-spin (S = 10) quantum molecular magnets. The array is made to act as a spin register where each nanomagnet encodes a single bit of information. |
| | | |
− | 2018年发表在《自然物理学》上的一篇文章描述了在低温(T = 1K)下对一排高自旋(S = 10)量子分子磁体进行的兰道尔擦除(Landauer erasure)。该阵列作为自旋寄存器,每个纳米粒子网编码一位信息。 | + | 2018年发表在《自然物理学》上的一篇文章描述了在低温(T = 1K)下对一排高自旋(S = 10)量子'''<font color="#ff8000"> 分子磁体 molecular magnets </font>'''进行的'''<font color="#ff8000"> 兰道尔擦除 Landauer erasure </font>'''。该阵列作为自旋寄存器,每个纳米磁铁都编码一位节的信息。<ref name="Gaudenzi">{{Citation |author1=Rocco Gaudenzi |author2=Enrique Burzuri |author3=Satoru Maegawa |author4=Herre van der Zant |author5=Fernando Luis |doi=10.1038/s41567-018-0070-7 |bibcode=2018NatPh..14..565G |title=Quantum Landauer erasure with a molecular nanomagnet |journal= Nature Physics |volume=14 |issue=6 |pages= 565–568 |date=19 March 2018 |s2cid=125321195 |url=http://resolver.tudelft.nl/uuid:c3926045-6e1a-4dd7-a584-df4a5c6b51b6 }}</ref> |
| | | |
| | | |
| | | |
− | ==Rationale== | + | ==Rationale 基本原理== |
− | 基本原理
| + | |
| | | |
| Landauer's principle can be understood to be a simple [[logical consequence]] of the [[second law of thermodynamics]]—which states that the entropy of an [[isolated system]] cannot decrease—together with the definition of [[thermodynamic temperature]]. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased). | | Landauer's principle can be understood to be a simple [[logical consequence]] of the [[second law of thermodynamics]]—which states that the entropy of an [[isolated system]] cannot decrease—together with the definition of [[thermodynamic temperature]]. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased). |
第88行: |
第89行: |
| Landauer's principle can be understood to be a simple logical consequence of the second law of thermodynamics—which states that the entropy of an isolated system cannot decrease—together with the definition of thermodynamic temperature. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased). | | Landauer's principle can be understood to be a simple logical consequence of the second law of thermodynamics—which states that the entropy of an isolated system cannot decrease—together with the definition of thermodynamic temperature. For, if the number of possible logical states of a computation were to decrease as the computation proceeded forward (logical irreversibility), this would constitute a forbidden decrease of entropy, unless the number of possible physical states corresponding to each logical state were to simultaneously increase by at least a compensating amount, so that the total number of possible physical states was no smaller than it was originally (i.e. total entropy has not decreased). |
| | | |
− | 兰道尔的原则可以理解为热力学第二定律的一个简单的逻辑后果--该定律指出,一个孤立系统的熵不能与热力学温度的定义一起减少。因为,如果一个计算的可能逻辑状态的数目随着计算的进行而减少(逻辑的不可逆性),这将构成熵的被禁止的减少,除非与每个逻辑状态相对应的可能物理状态的数目同时增加至少一个补偿量,从而使可能物理状态的总数不比原来少(即总熵没有减少)。
| + | 兰道尔原理可以理解为'''<font color="#ff8000"> 热力学第二定律 second law of thermodynamics </font>'''的一个简单的逻辑后果--该定律指出,一个孤立系统的熵不能与热力学温度的定义一起减少。因为,如果计算的可能逻辑状态的数量随着计算的进行而减少(逻辑的不可逆性),这将构成熵的被禁止的减少。除非与每个逻辑状态相应的可能物理状态的数量同时增加至少一个补偿量,从而使可能物理状态的总数不比原来少(即总熵没有减少)。 |
| | | |
| | | |
第95行: |
第96行: |
| Yet, an increase in the number of physical states corresponding to each logical state means that, for an observer who is keeping track of the logical state of the system but not the physical state (for example an "observer" consisting of the computer itself), the number of possible physical states has increased; in other words, entropy has increased from the point of view of this observer. | | Yet, an increase in the number of physical states corresponding to each logical state means that, for an observer who is keeping track of the logical state of the system but not the physical state (for example an "observer" consisting of the computer itself), the number of possible physical states has increased; in other words, entropy has increased from the point of view of this observer. |
| | | |
− | 然而,每个逻辑状态对应的物理状态数量的增加意味着,对于一个跟踪系统的逻辑状态而不是物理状态的观察者(例如一个由计算机本身组成的“观察者”)来说,可能的物理状态数量增加了; 换句话说,从这个观察者的角度来看,熵增加了。
| + | 然而,对系统的逻辑状态(而不是物理状态)进行跟踪的观察者(例如一个由计算机本身组成的“观察者”)来说,每个逻辑状态对应的物理状态数量的增加意味着,可能的物理状态数量增加了; 换句话说,从这个观察者的角度来看,熵增加了。 |
| | | |
| | | |
第103行: |
第104行: |
| The maximum entropy of a bounded physical system is finite. (If the holographic principle is correct, then physical systems with finite surface area have a finite maximum entropy; but regardless of the truth of the holographic principle, quantum field theory dictates that the entropy of systems with finite radius and energy is finite due to the Bekenstein bound.) To avoid reaching this maximum over the course of an extended computation, entropy must eventually be expelled to an outside environment. | | The maximum entropy of a bounded physical system is finite. (If the holographic principle is correct, then physical systems with finite surface area have a finite maximum entropy; but regardless of the truth of the holographic principle, quantum field theory dictates that the entropy of systems with finite radius and energy is finite due to the Bekenstein bound.) To avoid reaching this maximum over the course of an extended computation, entropy must eventually be expelled to an outside environment. |
| | | |
− | 有界物理系统的最大熵是有限的。(如果全息原理理论是正确的,那么有限表面积的物理系统的最大熵是有限的; 但是不管全息原理理论是否正确,量子场理论指出,由于贝肯斯坦约束,半径和能量有限的系统的熵是有限的。)为了避免在扩展计算过程中达到这个最大值,熵最终必须被驱逐到外部环境中。 | + | 有界物理系统的最大熵是有限的。(如果'''<font color="#ff8000"> 全息原理 holographic principle </font>'''是正确的,那么表面积有限的物理系统的最大熵是有限的; 但是不管全息原理是否正确,'''<font color="#ff8000"> 量子场理论 quantum field theory </font>'''指出,由于'''<font color="#ff8000"> 贝肯斯坦约束 Bekenstein bound </font>''',半径和能量有限的系统的熵是有限的。)为了避免在扩展计算过程中达到这个最大值,熵最终必须被驱逐到外部环境。 |
| + | |
| | | |
| | | |
| + | ==Equation 平衡== |
| | | |
− | ==Equation==
| |
− | 平衡
| |
| | | |
| Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the ''Landauer limit'': | | Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the ''Landauer limit'': |
第114行: |
第115行: |
| Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the Landauer limit: | | Landauer's principle asserts that there is a minimum possible amount of energy required to erase one bit of information, known as the Landauer limit: |
| | | |
− | 兰道尔原理断言,擦除一个信息位所需的能量是最小的,称为兰道尔极限。
| + | 兰道尔原理断言,擦除单位信息所需的能量是最小的,也就是著名的兰道尔极限。 |
| | | |
| | | |
第129行: |
第130行: |
| where <math>k_\text{B}</math> is the Boltzmann constant (approximately 1.38×10<sup>−23</sup> J/K), <math>T</math> is the temperature of the heat sink in kelvins, and <math>\ln 2</math> is the natural logarithm of 2 (approximately 0.69315). After setting T equal to room temperature 20 °C (293.15 K), we can get the Landauer limit of 0.0175 eV (2.805 zJ) per bit erased. | | where <math>k_\text{B}</math> is the Boltzmann constant (approximately 1.38×10<sup>−23</sup> J/K), <math>T</math> is the temperature of the heat sink in kelvins, and <math>\ln 2</math> is the natural logarithm of 2 (approximately 0.69315). After setting T equal to room temperature 20 °C (293.15 K), we can get the Landauer limit of 0.0175 eV (2.805 zJ) per bit erased. |
| | | |
− | 其中,K text { b } </math > 是波兹曼常数(大约1.38 × 10 < sup >-23 </sup > J/K) ,T </math > 是散热器的温度,单位为开尔文,而 < math > ln 2 </math > 是2的自然对数(大约0.69315)。设 T 为室温20 ° c (293.15 k)后,可以得到每位擦除0.0175 eV (2.805 zJ)的朗道尔极限。
| + | 其中,< math > K text { b } </math > 是'''<font color="#ff8000"> 波尔兹曼常数 Boltzmann constant </font>''' (大约1.38 × 10 < sup >-23 </sup > J/K) ,< math > T </math > 是散热器的温度,单位为开尔文,而 < math > ln 2 </math > 是2的自然对数(大约0.69315)。设 T 为室温20 ° c (293.15 k)后,可以得到擦除单位信息0.0175 eV (2.805 zJ)的兰道尔极限。 |
| | | |
| | | |
第137行: |
第138行: |
| For an environment at temperature T, energy E = ST must be emitted into that environment if the amount of added entropy is S. For a computational operation in which 1 bit of logical information is lost, the amount of entropy generated is at least k<sub>B</sub> ln 2, and so, the energy that must eventually be emitted to the environment is E ≥ k<sub>B</sub>T ln 2. | | For an environment at temperature T, energy E = ST must be emitted into that environment if the amount of added entropy is S. For a computational operation in which 1 bit of logical information is lost, the amount of entropy generated is at least k<sub>B</sub> ln 2, and so, the energy that must eventually be emitted to the environment is E ≥ k<sub>B</sub>T ln 2. |
| | | |
− | 对于温度为T的环境,如果增加的熵量为S,则必须向该环境放出能量E=ST,对于丢失1位逻辑信息的计算操作,产生的熵量至少为k<sub>B</sub>ln 2,所以,最终必须向环境放出的能量为E≥k<sub>B</sub>T ln 2。
| + | 对于温度为T的环境,如果增加的熵量为S,则必须向环境放出能量E=ST。对于丢失1位逻辑信息的计算操作,产生的熵量至少为k<sub>B</sub>ln 2,所以,最终必须向环境放出的能量为E≥k<sub>B</sub>T ln 2。 |
| | | |
| | | |
第147行: |
第148行: |
| The principle is widely accepted as physical law, but in recent years it has been challenged for using circular reasoning and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000) and Norton (2004, 2011), and defended by Bennett (2003), and by Jordan and Manikandan (2019). | | The principle is widely accepted as physical law, but in recent years it has been challenged for using circular reasoning and faulty assumptions, notably in Earman and Norton (1998), and subsequently in Shenker (2000) and Norton (2004, 2011), and defended by Bennett (2003), and by Jordan and Manikandan (2019). |
| | | |
− | 这一原则被广泛接受为物理定律,但近年来,它因使用循环推理和错误假设而受到挑战,尤其是厄尔曼和诺顿(1998年) ,随后是申克(2000年)和诺顿(2004年,2011年) ,贝内特(2003年)和约旦和马尼坎达(2019年)为之辩护。
| + | 这一原理被广泛接受为物理定律,但近年来,它因使用'''<font color="#ff8000"> 循环推理 circular reasoning </font>'''和错误假设而受到挑战,尤其是厄尔曼 Earman和诺顿 Norton (1998年) ,是申克 shenker (2000年) <ref name="shenker">[http://philsci-archive.pitt.edu/archive/00000115/ Logic and Entropy] Critique by Orly Shenker (2000)</ref>和Norton (2004年)</ref> 2011<ref name="norton2">[http://www.pitt.edu/~jdnorton/papers/Waiting_SHPMP.pdf Waiting for Landauer] Response by Norton (2011年)</ref>) ,在这之后,贝内特 bennett (2003年<ref name="bennett" />),约旦 Ladyman(2007年<ref name="short">[http://philsci-archive.pitt.edu/archive/00002689/ The Connection between Logical and Thermodynamic Irreversibility] Defense by Ladyman et al. (2007)</ref>)和马尼坎达 Manikandan (2019年<ref name="jordan">[https://inference-review.com/letter/some-like-it-hot Some Like It Hot], Letter to the Editor in reply to Norton's article by A. Jordan and S. Manikandan (2019)</ref>)为之辩护。 |
| | | |
| | | |
第155行: |
第156行: |
| On the other hand, recent advances in non-equilibrium statistical physics have established that there is no a priori relationship between logical and thermodynamic reversibility. It is possible that a physical process is logically reversible but thermodynamically irreversible. It is also possible that a physical process is logically irreversible but thermodynamically reversible. At best, the benefits of implementing a computation with a logically reversible systems are nuanced. | | On the other hand, recent advances in non-equilibrium statistical physics have established that there is no a priori relationship between logical and thermodynamic reversibility. It is possible that a physical process is logically reversible but thermodynamically irreversible. It is also possible that a physical process is logically irreversible but thermodynamically reversible. At best, the benefits of implementing a computation with a logically reversible systems are nuanced. |
| | | |
− | 另一方面,非平衡统计物理学的最新进展已经确定,逻辑可逆性和热力学可逆性之间不存在先验关系。一个物理过程有可能在逻辑上是可逆的,但在热力学上是不可逆的。也有可能一个物理过程在逻辑上是不可逆的,但在热力学上是可逆的。用逻辑上可逆的系统进行计算的好处极其微小。
| + | 另一方面,非平衡统计物理学的最新进展已经确定,逻辑可逆性和热力学可逆性之间不存在先验关系。<ref name="sagawa">{{Citation |author=Takahiro Sagawa |title= Thermodynamic and logical reversibilities revisited |journal= Journal of Statistical Mechanics: Theory and Experiment |year= 2014 |volume= 2014 |issue= 3 |page= 03025 |doi= 10.1088/1742-5468/2014/03/P03025 |arxiv= 1311.1886 |bibcode= 2014JSMTE..03..025S |s2cid= 119247579 }}</ref>一个物理过程有可能在逻辑上是可逆的,但在热力学上是不可逆的。也有可能一个物理过程在逻辑上是不可逆的,但在热力学上是可逆的。用逻辑上可逆的系统进行计算的好处极其微小。<ref name="wolpert">{{Citation |author=David H. Wolpert |title= Stochastic thermodynamics of computation |journal= Journal of Physics A: Mathematical and Theoretical |year= 2019 |volume= 52 |issue= 19 |page= 193001 |doi= 10.1088/1751-8121/ab0850 |arxiv= 1905.05669 |bibcode= 2019JPhA...52s3001W |s2cid= 126715753 }}</ref> |
| | | |
| | | |
第162行: |
第163行: |
| In 2016, researchers at the University of Perugia claimed to have demonstrated a violation of Landauer’s principle. However, according to Laszlo Kish (2016), their results are invalid because they "neglect the dominant source of energy dissipation, namely, the charging energy of the capacitance of the input electrode". | | In 2016, researchers at the University of Perugia claimed to have demonstrated a violation of Landauer’s principle. However, according to Laszlo Kish (2016), their results are invalid because they "neglect the dominant source of energy dissipation, namely, the charging energy of the capacitance of the input electrode". |
| | | |
− | 2016年,佩鲁贾大学的研究人员声称已经证明了对兰道尔原理的违反。然而,根据 Laszlo Kish (2016) ,他们的结果是无效的,因为他们“忽略了能量耗散的主要来源,即输入电极电容的充电能量”。
| + | 2016年,佩鲁贾大学 University of Perugia的研究人员声称已经证明违反了兰道尔原理。<ref>{{cite web|url=https://m.phys.org/news/2016-07-refutes-famous-physical.html|title=Computing study refutes famous claim that 'information is physical'|website=m.phys.org}}</ref>然而,根据拉斯洛·基什 Laszlo Kish (2016) ,<ref>{{cite web|author=Laszlo Bela Kish42.27Texas A&M University |url=https://www.researchgate.net/publication/304582612 |title=Comments on "Sub-kBT Micro-Electromechanical Irreversible Logic Gate" |date= |accessdate=2020-03-08}}</ref>他们的结果是无效的,因为他们“忽略了能量耗散的主要来源,即输入电极电容的充电能量”。 |
| | | |
| | | |
第170行: |
第171行: |
| | | |
| * [[Margolus–Levitin theorem]] | | * [[Margolus–Levitin theorem]] |
− | Margolus-Levitin定理
| + | 玛格罗斯·莱维汀定理 |
| | | |
| * [[Bremermann's limit]] | | * [[Bremermann's limit]] |
第179行: |
第180行: |
| | | |
| * [[Kolmogorov complexity]] | | * [[Kolmogorov complexity]] |
− | Kolmogorov复杂性
| + | 科尔莫戈罗夫复杂性 |
| | | |
| * [[Entropy in thermodynamics and information theory]] | | * [[Entropy in thermodynamics and information theory]] |
第188行: |
第189行: |
| | | |
| * [[Jarzynski equality]] | | * [[Jarzynski equality]] |
− | Jarzynski恒等式
| + | 贾任斯基恒等式 |
| | | |
| | | |
第244行: |
第245行: |
| Category:Thermodynamic entropy | | Category:Thermodynamic entropy |
| | | |
− | 类别: 熵 | + | 类别: 热力学熵 |
| | | |
| [[Category:Entropy and information]] | | [[Category:Entropy and information]] |
第262行: |
第263行: |
| Category:Principles | | Category:Principles |
| | | |
− | 类别: 原则 | + | 类别: 原理 |
| | | |
| [[Category:Limits of computation]] | | [[Category:Limits of computation]] |