更改

跳到导航 跳到搜索
删除43字节 、 2020年12月20日 (日) 19:58
第51行: 第51行:       −
这种方法是通过测量'''热容曲线 Heat Capacity Curves'''和相变中熵的变化,来准确测定纯物质的绝对熵的基础,<ref name="Oxtoby8th">Oxtoby, D. W; Gillis, H.P., [[Laurie Butler|Butler, L. J.]] (2015).''Principles of Modern Chemistry'', Brooks Cole. p. 617. {{ISBN|978-1305079113}}</ref> <ref name="MortimerBook"></ref>比如'''量热法  calorimetry'''。
+
这种方法是通过测量'''热容曲线 Heat Capacity Curves'''和相变中熵的变化,来准确测定纯物质的绝对熵的基础,<ref name="Oxtoby8th">Oxtoby, D. W; Gillis, H.P., Laurie Butler(2015).''Principles of Modern Chemistry'', Brooks Cole. p. 617.</ref> <ref name="MortimerBook"></ref>比如'''量热法  calorimetry'''。
为了描述一个热力学系统在物理平衡状态下(要求有明确定义的等压P和等温T)偏离化学平衡状态,引入一组内部变量<math>x_i</math>,<ref name="Schmidt-Rohr 14"></ref> 可以用该等式
+
为了描述一个热力学系统在物理平衡状态下(要求有明确定义的等压P和等温T)偏离化学平衡状态,引入一组内部变量<math>x_i</math>,<ref name="Schmidt-Rohr 14"></ref> 可以用该等式
      −
: <math>\mathrm dS = \frac{\delta Q}{T} - \frac{1}{T} \sum_{j} \, \Xi_{j} \,\delta \xi_j \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {( 封闭系统,实际可能的准静态不可逆过程).}</math>
+
: <math>\mathrm dS = \frac{\delta Q}{T} - \frac{1}{T} \sum_{j} \, \Xi_{j} \,\delta \xi_j \,\, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \text {(封闭系统,实际可能的准静态不可逆过程)}</math>
 
         
第二项代表内部变量的功,这些内部变量可能受到外部影响的干扰,但是系统不能通过内部变量做任何正功。这种说法介绍了热力学系统在时间上演化不可能逆转的性质,并且可以被认为是热力学第二原理的另外一种相当于熵原理的表述。该公式可以被看作使用'''熵 Entropy'''的热力学第二定律等价表述<ref> Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach,  Eur. J. Phys.  vol. 26,  769–781.</ref><ref>{{Cite journal | doi=10.1155/2013/906136|title = A Derivation of the Main Relations of Nonequilibrium Thermodynamics| journal=ISRN Thermodynamics| volume=2013| pages=1–9|year = 2013|last1 = Pokrovskii|first1 = Vladimir N.|doi-access=free}}</ref>
 
第二项代表内部变量的功,这些内部变量可能受到外部影响的干扰,但是系统不能通过内部变量做任何正功。这种说法介绍了热力学系统在时间上演化不可能逆转的性质,并且可以被认为是热力学第二原理的另外一种相当于熵原理的表述。该公式可以被看作使用'''熵 Entropy'''的热力学第二定律等价表述<ref> Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach,  Eur. J. Phys.  vol. 26,  769–781.</ref><ref>{{Cite journal | doi=10.1155/2013/906136|title = A Derivation of the Main Relations of Nonequilibrium Thermodynamics| journal=ISRN Thermodynamics| volume=2013| pages=1–9|year = 2013|last1 = Pokrovskii|first1 = Vladimir N.|doi-access=free}}</ref>
  −
         
<font color='red'><s></s></font><font color= 'blue'></font>
 
<font color='red'><s></s></font><font color= 'blue'></font>
热力学第零定律是指如果两个热力学系统都与第三个热力学系统处于热平衡(温度相同)状态,则它们彼此也必定处于热平衡状态。热力学第零定律在它这个简短叙述中让人们认识到热平衡关系中的两个物体具有相同的温度,特别是当一个被测物体与一个参考测温物体具有相同的温度时,<ref name=dugdale>{{cite book|author=J. S. Dugdale|title=Entropy and its Physical Meaning|publisher=Taylor & Francis|year=1996|isbn=978-0-7484-0569-5|page=13|quote=This law is the basis of temperature.}}</ref>对于两个处于热平衡状态的物体,有无限多的'''<font color = '#ff8000'>经验温标  empirical temperature scales</font>''',这通常取决于特定参考温度体的性质。热力学第二定律允许区分'''<font color = '#ff8000'>温度标度 temperature scale</font>''',它定义了一个绝对的热力学温度,与任何特定的参考温度体的性质无关。<ref>[[Mark Zemansky (1968), pp. 207–209.</ref><ref>Quinn, T.J. (1983), p. 8.</ref>
+
热力学第零定律是指如果两个热力学系统都与第三个热力学系统处于热平衡(温度相同)状态,则它们彼此也必定处于热平衡状态。热力学第零定律在它这个简短叙述中让人们认识到热平衡关系中的两个物体具有相同的温度,特别是当一个被测物体与一个参考测温物体具有相同的温度时,<ref name=dugdale>{{cite book|author=J. S. Dugdale|title=Entropy and its Physical Meaning|publisher=Taylor & Francis|year=1996|isbn=978-0-7484-0569-5|page=13|quote=This law is the basis of temperature.}}</ref>对于两个处于热平衡状态的物体,有无限多的'''<font color = '#ff8000'>经验温标  empirical temperature scales</font>''',这通常取决于特定参考温度体的性质。热力学第二定律允许区分'''<font color = '#ff8000'>温度标度 temperature scale</font>''',它定义了一个绝对的热力学温度,与任何特定的参考温度体的性质无关。<ref>Mark Zemansky (1968), pp. 207–209.</ref><ref>Quinn, T.J. (1983), p. 8.</ref>
    
==热力学第二定律的不同表述 Various statements of the law==
 
==热力学第二定律的不同表述 Various statements of the law==
7,129

个编辑

导航菜单