More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>. | More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>. |