第23行: |
第23行: |
| |- | | |- |
| | 主要贡献 || 庞加莱猜想,三体问题,拓扑学,狭义相对论,庞加莱-霍普夫定理,庞加莱对偶性,庞加莱–伯克霍夫–威特定理,庞加莱不等式,希尔伯特–庞加莱级数,庞加莱度量,旋转数,提出术语贝蒂数 ,分岔理论,混沌理论,布劳威尔不动点定理,球体领域,庞加莱-本迪克松定理,庞加莱-林德斯泰特方法,庞加莱复现定理,庞加莱圆盘模型 | | | 主要贡献 || 庞加莱猜想,三体问题,拓扑学,狭义相对论,庞加莱-霍普夫定理,庞加莱对偶性,庞加莱–伯克霍夫–威特定理,庞加莱不等式,希尔伯特–庞加莱级数,庞加莱度量,旋转数,提出术语贝蒂数 ,分岔理论,混沌理论,布劳威尔不动点定理,球体领域,庞加莱-本迪克松定理,庞加莱-林德斯泰特方法,庞加莱复现定理,庞加莱圆盘模型 |
− | |—
| |
| |} | | |} |
| | | |
第30行: |
第29行: |
| | | |
| == 个人介绍 == | | == 个人介绍 == |
− | <font color="#ff8000"> 儒勒·昂利·庞加莱Jules Henri Poincaré</font> 是法国数学家、理论物理学家、工程师和科学哲学家。他经常被描述为一个博学者,在数学方面被称为“最后的普遍主义者” ,因为他在他有生之年在所有学科领域都表现出色。 | + | <font color="#ff8000">儒勒·昂利·庞加莱Jules Henri Poincaré</font> 是法国数学家、理论物理学家、工程师和科学哲学家。他经常被描述为一个博学者,在数学方面被称为“最后的普遍主义者” ,因为他在他有生之年在所有学科领域都表现出色。 |
| | | |
− | 作为一名数学家和物理学家,他对<font color="#ff8000"> 纯粹数学</font>和<font color="#ff8000">应用数学、数学物理学和</font><font color="#ff8000"> 天体力学</font>做出了许多原创性的基础性贡献。在他对<font color="#ff8000"> 三体问题</font>的研究中,庞加莱成为第一个发现<font color="#ff8000"> 混沌确定性模型</font>的人,它奠定了现代<font color="#ff8000"> 混沌理论</font>的基础。他也被认为是<font color="#ff8000"> 拓扑学Topology</font>领域的创始人之一。 | + | 作为一名数学家和物理学家,他对<font color="#ff8000">纯粹数学</font>和<font color="#ff8000">应用数学、数学物理学和</font><font color="#ff8000">天体力学</font>做出了许多原创性的基础性贡献。在他对<font color="#ff8000">三体问题</font>的研究中,庞加莱成为第一个发现<font color="#ff8000">混沌确定性模型</font>的人,它奠定了现代<font color="#ff8000">混沌理论</font>的基础。他也被认为是<font color="#ff8000">拓扑学Topology</font>领域的创始人之一。 |
| | | |
− | 庞加莱阐明了物理定律在不同变换下的不变性的重要性,并率先提出了<font color="#ff8000"> 洛伦兹变换</font>的现代对称形式。庞加莱发现了剩下的相对论速度变换,并在1905年写给亨德里克 · 洛伦兹的信中记录了它们。因此,他得到了所有<font color="#ff8000">麦克斯韦方程</font>的完美不变性,这是<font color="#ff8000">狭义相对论理论 </font>形成过程中的重要一步。1905年,庞加莱首次提出<font color="#ff8000">引力波(ondes 引力波)</font>,它从物体中发射出来,并按照<font color="#ff8000"> 洛伦兹变换</font>的要求以光速传播。 | + | 庞加莱阐明了物理定律在不同变换下的不变性的重要性,并率先提出了<font color="#ff8000">洛伦兹变换</font>的现代对称形式。庞加莱发现了剩下的相对论速度变换,并在1905年写给亨德里克 · 洛伦兹的信中记录了它们。因此,他得到了所有<font color="#ff8000">麦克斯韦方程</font>的完美不变性,这是<font color="#ff8000">狭义相对论理论</font>形成过程中的重要一步。1905年,庞加莱首次提出<font color="#ff8000">引力波(ondes 引力波)</font>,它从物体中发射出来,并按照<font color="#ff8000">洛伦兹变换</font>的要求以光速传播。 |
| | | |
| 物理和数学方面的庞加莱小组就是以他的名字命名的。 | | 物理和数学方面的庞加莱小组就是以他的名字命名的。 |
| | | |
− | 在20世纪早期,他制定了<font color="#ff8000"> 庞加莱猜想Poincaré conjecture</font>,随着时间的推移,这成为著名的数学难题之一,直到2002年至2003年被<font color="#ff8000">格里戈里·佩雷尔曼Grigori Perelman</font>解决。 | + | 在20世纪早期,他制定了<font color="#ff8000">庞加莱猜想Poincaré conjecture</font>,随着时间的推移,这成为著名的数学难题之一,直到2002年至2003年被<font color="#ff8000">格里戈里·佩雷尔曼Grigori Perelman</font>解决。 |
| | | |
| | | |
第49行: |
第48行: |
| == 任职经历 == | | == 任职经历 == |
| | | |
− | 获得学位后,庞加莱开始在诺曼底的卡昂大学(1879年12月)担任数学初级讲师。同时,他发表了第一篇关于一类自守函数处理的重要文章。
| + | 获得学位后,庞加莱开始在诺曼底的卡昂大学(1879年12月)担任数学初级讲师。同时,他发表了第一篇关于一类自守函数处理的重要文章。庞加莱立即跻身欧洲最伟大的数学家之列,吸引了许多著名数学家的注意。1881年,庞加莱被邀请到巴黎大学理学院担任教学职务;他接受了邀请。1883年至1897年间,他在<font color="#32CD32">埃科尔综合理工学院École Polytechnique</font>教授<font color="#ff8000">数学分析Mathematical analysis</font>。 |
| | | |
− | 庞加莱立即跻身欧洲最伟大的数学家之列,吸引了许多著名数学家的注意。1881年,庞加莱被邀请到巴黎大学理学院担任教学职务;他接受了邀请。1883年至1897年间,他在<font color="#32CD32">埃科尔综合理工学院École Polytechnique</font>教授<font color="#ff8000"> 数学分析Mathematical analysis</font>。
| + | 1881-1882年,庞加莱创立了一个新的数学分支: 微分方程定性理论。他展示了如何不用解方程就可以得到关于一组解的行为的最重要的信息(因为这可能并不总是可能的)。他成功地用这种方法解决了天体力学和数学物理的问题。他从未完全放弃采矿业而投身于数学。1881年至1885年,他在公共服务部担任工程师,负责北方铁路的发展。他最终在1893年成为矿业公司的总工程师,1910年成为监察长。从1881年开始,他在巴黎大学(索邦大学)教书,直到他的职业生涯结束。他最初被任命为分析师(分析学副教授)。最终,他获得了物理力学和实验力学、数学物理学和概率论、天体力学和天文学的学位。1887年,32岁的庞加莱当选为法国科学院院士。他于1906年成为法兰西学术院主席,并于1908年3月5日当选为议员。1887年,他以解决有关多个轨道物体自由运动的三体问题,赢得了瑞典国王奥斯卡二世的数学竞赛。(参见下面的<font color="#ff8000"> 三体问题Three-body problem</font>部分。)1893年,他加入了<font color="#ff8000">法国经度局French Bureau des Longitudes </font>,使他参与了世界各地时间的同步工作。1897年,庞加莱支持了一个不成功的建议,即循环尺度的十进制化,从而得到时间和经度。正是这篇文章促使他考虑建立国际时区的问题,以及相对运动的物体之间的时间同步问题。(参见下面相对论部分的工作。)1899年,更成功的是1904年,他介入了对阿尔弗雷德 · 德雷福斯的审判。他抨击了一些针对德雷福斯的虚假科学证据,德雷福斯是法国军队中一名被同事指控犯有叛国罪的犹太军官。从1901年到1903年,庞加莱是法国天文学会(SAF)的主席。 |
− | | |
− | 1881-1882年,庞加莱创立了一个新的数学分支: 微分方程定性理论。他展示了如何不用解方程就可以得到关于一组解的行为的最重要的信息(因为这可能并不总是可能的)。他成功地用这种方法解决了天体力学和数学物理的问题。 | |
− | | |
− | 他从未完全放弃采矿业而投身于数学。1881年至1885年,他在公共服务部担任工程师,负责北方铁路的发展。他最终在1893年成为矿业公司的总工程师,1910年成为监察长。
| |
− | | |
− | 从1881年开始,他在巴黎大学(索邦大学)教书,直到他的职业生涯结束。他最初被任命为分析师(分析学副教授)。最终,他获得了物理力学和实验力学、数学物理学和概率论、天体力学和天文学的学位。
| |
− | | |
− | 1887年,32岁的庞加莱当选为法国科学院院士。他于1906年成为法兰西学术院主席,并于1908年3月5日当选为议员。
| |
− | | |
− | 1887年,他以解决有关多个轨道物体自由运动的三体问题,赢得了瑞典国王奥斯卡二世的数学竞赛。(参见下面的<font color="#ff8000"> 三体问题Three-body problem</font>部分。)
| |
− | | |
− | 1893年,他加入了<font color="#ff8000">法国经度局French Bureau des Longitudes </font>,使他参与了世界各地时间的同步工作。1897年,庞加莱支持了一个不成功的建议,即循环尺度的十进制化,从而得到时间和经度。正是这篇文章促使他考虑建立国际时区的问题,以及相对运动的物体之间的时间同步问题。(参见下面相对论部分的工作。)
| |
− | | |
− | 1899年,更成功的是1904年,他介入了对阿尔弗雷德 · 德雷福斯的审判。他抨击了一些针对德雷福斯的虚假科学证据,德雷福斯是法国军队中一名被同事指控犯有叛国罪的犹太军官。
| |
− | | |
− | 从1901年到1903年,庞加莱是法国天文学会(SAF)的主席。
| |
| | | |
| == 学术背景 == | | == 学术背景 == |
第78行: |
第61行: |
| 他提出的具体主题包括: | | 他提出的具体主题包括: |
| | | |
− | *[[algebraic topology]] | + | *[[algebraic topology]] [[代数拓扑]] |
− | *[[代数拓扑]]
| + | *[[several complex variables|the theory of analytic functions of several complex variables]] 多复变量|多复变量解析函数理论 |
− | *[[several complex variables|the theory of analytic functions of several complex variables]] | + | *[[abelian variety|the theory of abelian functions]] 交换函数理论 |
− | *多复变量|多复变量解析函数理论
| + | *[[algebraic geometry]][[代数几何]] |
− | *[[abelian variety|the theory of abelian functions]] | + | *the [[Poincaré conjecture]], proven in 2003 by [[Grigori Perelman]]. [[庞加莱猜想]],2003年由[[格里高里佩雷尔曼]]证明。 |
− | *[abelian变体|交换函数理论]]
| + | *[[Poincaré recurrence theorem]] [[庞加莱递推定理]] |
− | *[[algebraic geometry]] | + | *[[hyperbolic geometry]] [[双曲几何]] |
− | *[[代数几何]]
| + | *[[number theory]] [[数论]] |
− | *the [[Poincaré conjecture]], proven in 2003 by [[Grigori Perelman]]. | + | *the [[three-body problem]] [[三体问题]] |
− | *[[庞加莱猜想]],2003年由[[格里高里佩雷尔曼]]证明。
| + | *[[diophantine equation|the theory of diophantine equations]] 丢番图方程|丢番图方程理论 |
− | *[[Poincaré recurrence theorem]] | + | *[[electromagnetism]] [[电磁学]] |
− | *[[庞加莱递推定理]]
| + | *[[Special relativity|the special theory of relativity]] 狭义相对论 |
− | *[[hyperbolic geometry]] | + | *the [[fundamental group]] [[基本群]] |
− | *[[双曲几何]]
| + | *在[[微分方程]]领域,庞加莱给出了许多对微分方程定性理论至关重要的结果,例如[[庞加莱同调球|庞加莱球]]和[[庞加莱映射]]。庞加莱关于“每个人的信仰”的[[q:Henri Poincaré‘正态误差定律’]](参见[[正态分布]]中关于“法则”的解释)。他还发表了一篇有影响力的论文,提供了一个新的数学论证来支持[[量子力学]]。<ref name="McCormmach">{{Citation | last = McCormmach | first = Russell | title = Henri Poincaré and the Quantum Theory | journal = Isis | volume = 58 | issue = 1 | pages = 37–55 | date =Spring 1967 | doi =10.1086/350182| s2cid = 120934561 }}</ref><ref name="Irons">{{Citation | last = Irons | first = F. E. | title = Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms | journal = American Journal of Physics | volume = 69 | issue = 8 | pages = 879–884 | date = August 2001 | doi =10.1119/1.1356056 |bibcode = 2001AmJPh..69..879I }}</ref> |
− | *[[number theory]] | |
− | *[[数论]]
| |
− | *the [[three-body problem]] | |
− | *[[三体问题]]
| |
− | *[[diophantine equation|the theory of diophantine equations]] | |
− | *丢番图方程|丢番图方程理论
| |
− | *[[electromagnetism]] | |
− | *[[电磁学]]
| |
− | *[[Special relativity|the special theory of relativity]] | |
− | *狭义相对论
| |
− | *the [[fundamental group]] | |
− | *[[基本群]]
| |
− | *在[[微分方程]]领域,庞加莱给出了许多对微分方程定性理论至关重要的结果,例如[[庞加莱同调球|庞加莱球]]和[[庞加莱映射]] | |
− | *庞加莱关于“每个人的信仰”的[[q:Henri Poincaré‘正态误差定律’]](参见[[正态分布]]中关于“法则”的解释)
| |
− | *发表了一篇有影响力的论文,提供了一个新的数学论证来支持[[量子力学]]。<ref name=McCormmach>{{Citation | last = McCormmach | first = Russell | title = Henri Poincaré and the Quantum Theory | journal = Isis | volume = 58 | issue = 1 | pages = 37–55 | date =Spring 1967 | doi =10.1086/350182| s2cid = 120934561 }}</ref><ref name=Irons>{{Citation | last = Irons | first = F. E. | title = Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms | journal = American Journal of Physics | volume = 69 | issue = 8 | pages = 879–884 | date = August 2001 | doi =10.1119/1.1356056 |bibcode = 2001AmJPh..69..879I }}</ref>
| |
| | | |
| ===Three-body problem三体问题=== | | ===Three-body problem三体问题=== |
| | | |
− | 自从牛顿时代以来,数学家们就一直没有解决太阳系中两个以上轨道天体运动的一般解的问题。这个问题最初被称为<font color="#ff8000"> 三体问题</font>,后来又被称为 <font color="#ff8000"> n 体问题</font>,其中 n 是任意数量的两个以上的轨道天体。在19世纪末,n 体解被认为是非常重要和具有挑战性的。事实上,在1887年,为了庆祝他的60岁生日,瑞典国王奥斯卡二世在哥斯塔·米塔-列夫勒的建议下,设立了一个奖项,奖励任何能够找到解决此问题的方法的人。声明非常具体: | + | 自从牛顿时代以来,数学家们就一直没有解决太阳系中两个以上轨道天体运动的一般解的问题。这个问题最初被称为<font color="#ff8000">三体问题</font>,后来又被称为 <font color="#ff8000">n 体问题</font>,其中 n 是任意数量的两个以上的轨道天体。在19世纪末,n 体解被认为是非常重要和具有挑战性的。事实上,在1887年,为了庆祝他的60岁生日,瑞典国王奥斯卡二世在哥斯塔·米塔-列夫勒的建议下,设立了一个奖项,奖励任何能够找到解决此问题的方法的人。声明非常具体: |
| | | |
| <blockquote>给定一个由任意多个质点组成的系统,这些质点根据牛顿定律相互吸引,在假设没有两个质点相撞的情况下,找出每个质点的坐标在一个已知的时间函数的变量中的一个级数的表示,对该变量的所有值都是一致收敛的。</blockquote > | | <blockquote>给定一个由任意多个质点组成的系统,这些质点根据牛顿定律相互吸引,在假设没有两个质点相撞的情况下,找出每个质点的坐标在一个已知的时间函数的变量中的一个级数的表示,对该变量的所有值都是一致收敛的。</blockquote > |
第117行: |
第85行: |
| | | |
| === '''Chaos Theory 混沌理论''' === | | === '''Chaos Theory 混沌理论''' === |
− | 混沌理论是个正在发展的数学理论,其可以被用来描述动力学领域的一系列现象。比如,在物理领域去考虑力是如何在作用在运动物体上的。
| + | 混沌理论是个正在发展的数学理论,其可以被用来描述动力学领域的一系列现象。比如,在物理领域去考虑力是如何在作用在运动物体上的。在拉普拉斯的工作下,太阳系的过去和未来是能够被计算的,而其计算精度取决于我们对系统初始情况的了解程度。在庞加莱研究n体运动的过程中,他发现了对初始情况敏感(sensitivity to initial conditions,指一个变量的微小改变可能导致后续系统的指数型变化)这一现象并指出了随机性和决定论在不可预测性下可能并行 (Poincaré 1899)。一个我们没有注意到的微小变化可能会导致系统内我们无法预测的相当大的变化,这种作用在我们看来就是取决于可能性。如果我们精确地了解自然法则和宇宙的初始状态,我们可以精确地预测同一宇宙的后续状态。但是当自然法则被清晰地了解,我们可能对初始状态也只能近似地了解。如果对近似地了解允许我们去近似地预测后续状态,我们会称其是可预测的和被法则所规定的。但是庞加莱所发现的是,初始状态的微小改变可能会导致最终现象的巨大改变。前面很小的错误可能会导致后续预测的巨大错误。预测此时是不可能的,并且我们称呼其是随机现象。这就是混沌理论的诞生。<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/</ref> |
− | | |
− | 在拉普拉斯的工作下,太阳系的过去和未来是能够被计算的,而其计算精度取决于我们对系统初始情况的了解程度。在庞加莱研究n体运动的过程中,他发现了对初始情况敏感(sensitivity to initial conditions,指一个变量的微小改变可能导致后续系统的指数型变化)这一现象并指出了随机性和决定论在不可预测性下可能并行 (Poincaré 1899)。
| |
− | | |
− | 一个我们没有注意到的微小变化可能会导致系统内我们无法预测的相当大的变化,这种作用在我们看来就是取决于可能性。如果我们精确地了解自然法则和宇宙的初始状态,我们可以精确地预测同一宇宙的后续状态。但是当自然法则被清晰地了解,我们可能对初始状态也只能近似地了解。如果对近似地了解允许我们去近似地预测后续状态,我们会称其是可预测的和被法则所规定的。但是庞加莱所发现的是,初始状态的微小改变可能会导致最终现象的巨大改变。前面很小的错误可能会导致后续预测的巨大错误。预测此时是不可能的,并且我们称呼其是随机现象。
| |
− | | |
− | 这就是混沌理论的诞生。<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202497/</ref>
| |
| | | |
| ===Work on relativity 相对论部分的工作=== | | ===Work on relativity 相对论部分的工作=== |
第131行: |
第93行: |
| 并且引入了长度收缩假说来解释光学和电学实验相对于<font color="#ff8000"> 以太</font>探测运动的失败(见 迈克尔逊·莫利Michelson-Morley 实验)。 | | 并且引入了长度收缩假说来解释光学和电学实验相对于<font color="#ff8000"> 以太</font>探测运动的失败(见 迈克尔逊·莫利Michelson-Morley 实验)。 |
| | | |
− | 庞加莱一直是洛伦兹理论的解释者(有时是友好的批评家)。作为一个哲学家,庞加莱对“更深层的意义”很感兴趣。因此,他解释了洛伦兹的理论,并由此提出了许多与<font color="#ff8000"> 狭义相对论</font>相关的见解。在《时间的度量》(1898)中,庞加莱说“稍加反思就足以理解,所有这些肯定本身都没有意义。只有在约定成立的情况下,才能成立。”他还认为,科学家必须将光速的恒定性作为一个假设,以使物理理论具有最简单的形式。“ | + | 庞加莱一直是洛伦兹理论的解释者(有时是友好的批评家)。作为一个哲学家,庞加莱对“更深层的意义”很感兴趣。因此,他解释了洛伦兹的理论,并由此提出了许多与<font color="#ff8000"> 狭义相对论</font>相关的见解。在《时间的度量》(1898)中,庞加莱说“稍加反思就足以理解,所有这些肯定本身都没有意义。只有在约定成立的情况下,才能成立。”他还认为,科学家必须将光速的恒定性作为一个假设,以使物理理论具有最简单的形式。基于这些假设,他在1900年对洛伦兹关于本地时间的“奇妙发明”进行了讨论,并指出,当移动的时钟通过交换假定在移动帧中以相同速度在两个方向上传播的光信号来同步时,就出现了这种情况。1881年,庞加莱用<font color="#ff8000"> 双曲面模型Hyperboloid model</font>描述了<font color="#ff8000"> 双曲几何学Hyperbolic geometry</font>,提出了洛伦兹区间<math>x^2+y^2-z^2=-1</math>上不变的变换,使其在数学上等价于2+1维的<font color="#ff8000"> 洛伦兹变换</font>。此外,庞加莱的其他双曲几何模型(<font color="#ff8000"> 庞加莱圆盘模型,庞加莱半平面模型</font>)以及<font color="#ff8000"> 贝尔特拉米-克莱因Beltrami–Klein模型</font>都可以与相对论速度空间(见<font color="#ff8000"> 陀螺矢量空间</font>)相关。1892年庞加莱发展了包括偏振在内的光的数学理论。他关于偏振器和延迟器作用于代表极化状态的球体的观点称为<font color="#ff8000"> 庞加莱球</font>。证明了<font color="#ff8000">庞加莱球</font>具有一个基本的洛伦兹对称性,可以作为<font color="#ff8000"> 洛伦兹变换</font>和速度加法的几何表示。 |
− | | |
− | 基于这些假设,他在1900年对洛伦兹关于本地时间的“奇妙发明”进行了讨论,并指出,当移动的时钟通过交换假定在移动帧中以相同速度在两个方向上传播的光信号来同步时,就出现了这种情况。1881年,庞加莱用<font color="#ff8000"> 双曲面模型Hyperboloid model</font>描述了<font color="#ff8000"> 双曲几何学Hyperbolic geometry</font>,提出了洛伦兹区间<math>x^2+y^2-z^2=-1</math>上不变的变换,使其在数学上等价于2+1维的<font color="#ff8000"> 洛伦兹变换</font>。此外,庞加莱的其他双曲几何模型(<font color="#ff8000"> 庞加莱圆盘模型,庞加莱半平面模型</font>)以及<font color="#ff8000"> 贝尔特拉米-克莱因Beltrami–Klein模型</font>都可以与相对论速度空间(见<font color="#ff8000"> 陀螺矢量空间</font>)相关。
| |
− | | |
− | 1892年庞加莱发展了包括偏振在内的光的数学理论。他关于偏振器和延迟器作用于代表极化状态的球体的观点称为<font color="#ff8000"> 庞加莱球</font>。证明了<font color="#ff8000"> 庞加莱球</font>具有一个基本的洛伦兹对称性,可以作为<font color="#ff8000"> 洛伦兹变换</font>和速度加法的几何表示。
| |
| | | |
| ====Principle of relativity and Lorentz transformations相对论原理与洛伦兹变换==== | | ====Principle of relativity and Lorentz transformations相对论原理与洛伦兹变换==== |
| | | |
− | 他在1900年的两篇论文中讨论了“相对运动原理”并在1904年将其命名为<font color="#ff8000"> 相对性原理Principle of relativity</font>,根据这一理论,没有任何物理实验能够区分匀速运动状态和静止状态。 | + | 他在1900年的两篇论文中讨论了“相对运动原理”并在1904年将其命名为<font color="#ff8000"> 相对性原理Principle of relativity</font>,根据这一理论,没有任何物理实验能够区分匀速运动状态和静止状态。1905年庞加莱写信给洛伦兹,谈到他1904年的论文,庞加莱称之为“极其重要的论文”在这封信中,他指出了洛伦兹在对麦克斯韦方程组中的一个电荷占据空间进行变换时所犯的一个错误,并对洛伦兹给出的<font color="#ff8000"> 时间膨胀因子Time dilation factor</font>提出了质疑。在写给洛伦兹的第二封信中,庞加莱给出了他自己的理由,为什么洛伦兹的<font color="#ff8000"> 时间膨胀因子</font>终究是正确的ーー把洛伦兹变换变成一个群是必要的ーー他还给出了现在所知的<font color="#ff8000">相对论速度加法定律Relativistic velocity-addition law</font>。后来,庞加莱在1905年6月5日于巴黎举行的科学院会议上发表了一篇论文,论述了这些问题。在出版的版本中,他写道: 洛伦兹建立的基本观点是,电磁场的方程不会因某种形式的变换(我称之为洛伦兹)而改变。并于1904年将其命名为[[相对论]],根据这一原理,任何物理实验都无法区分均匀运动状态和静止状态。<ref name="louis">{{Citation|author=Poincaré, Henri|year=1913|chapter=[[s:The Principles of Mathematical Physics|The Principles of Mathematical Physics]]|title=The Foundations of Science (The Value of Science)|pages=297–320|publisher=Science Press|place=New York|postscript=; article translated from 1904 original}} available in [https://books.google.com/books/about/The_Foundations_of_Science.html?id=mBvNabP35zoC&pg=PA297 online chapter from 1913 book]</ref>1905年,庞加莱写信给洛伦兹,谈到洛伦兹1904年的论文,这篇论文被庞加莱称为“最重要的论文”。在这封信中,他指出了洛伦兹在将其变换应用于麦克斯韦方程组(电荷占据空间)时犯下的一个错误,并对洛伦兹给出的时间膨胀因子提出了质疑。<ref name="univ-nantes"> |
− | | |
− | 1905年庞加莱写信给洛伦兹,谈到他1904年的论文,庞加莱称之为“极其重要的论文”在这封信中,他指出了洛伦兹在对麦克斯韦方程组中的一个电荷占据空间进行变换时所犯的一个错误,并对洛伦兹给出的<font color="#ff8000"> 时间膨胀因子Time dilation factor</font>提出了质疑。
| |
− | | |
− | 在写给洛伦兹的第二封信中,庞加莱给出了他自己的理由,为什么洛伦兹的<font color="#ff8000"> 时间膨胀因子</font>终究是正确的ーー把洛伦兹变换变成一个群是必要的ーー他还给出了现在所知的<font color="#ff8000">相对论速度加法定律Relativistic velocity-addition law</font>。
| |
− | | |
− | 后来,庞加莱在1905年6月5日于巴黎举行的科学院会议上发表了一篇论文,论述了这些问题。在出版的版本中,他写道: 洛伦兹建立的基本观点是,电磁场的方程不会因某种形式的变换(我称之为洛伦兹)而改变。并于1904年将其命名为[[相对论]],根据这一原理,任何物理实验都无法区分均匀运动状态和静止状态。<ref name=louis>{{Citation|author=Poincaré, Henri|year=1913|chapter=[[s:The Principles of Mathematical Physics|The Principles of Mathematical Physics]]|title=The Foundations of Science (The Value of Science)|pages=297–320|publisher=Science Press|place=New York|postscript=; article translated from 1904 original}} available in [https://books.google.com/books/about/The_Foundations_of_Science.html?id=mBvNabP35zoC&pg=PA297 online chapter from 1913 book]</ref>
| |
− | | |
− | 1905年,庞加莱写信给洛伦兹,谈到洛伦兹1904年的论文,这篇论文被庞加莱称为“最重要的论文”。在这封信中,他指出了洛伦兹在将其变换应用于麦克斯韦方程组(电荷占据空间)时犯下的一个错误,并对洛伦兹给出的时间膨胀因子提出了质疑。<ref name="univ-nantes"> | |
− | | |
| 并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell = 1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+ y^2+ z^2- c^2t^2</math>是不变的。他通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,指出Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了四个向量的早期形式。庞加莱在1907年表示对他的新力学的四维重新表述不感兴趣,因为在他看来,将物理学翻译成四维几何的语言需要付出太多的努力才能获得有限的益处。1907年,由赫尔曼·明科夫斯基(Hermann Minkowski)得出了这个概念的后果。 | | 并证明了任意函数<math>\ell\left(\varepsilon\right)</math>对于所有<math>\varepsilon</math>必须是统一的(Lorentz通过一个不同的参数设置<math>\ell = 1</math>),以使变换形成一个组。在1906年发表的论文的放大版中,庞加莱指出组合<math>x^2+ y^2+ z^2- c^2t^2</math>是不变的。他通过引入<math>ct\sqrt{-1}</math>作为第四个虚坐标,指出Lorentz变换仅仅是四维空间中绕原点的旋转,他使用了四个向量的早期形式。庞加莱在1907年表示对他的新力学的四维重新表述不感兴趣,因为在他看来,将物理学翻译成四维几何的语言需要付出太多的努力才能获得有限的益处。1907年,由赫尔曼·明科夫斯基(Hermann Minkowski)得出了这个概念的后果。 |
| | | |
− | {{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.3, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=255–257 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz3.html}}</ref> | + | {{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.3, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=255–257 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz3.html}}</ref>在给洛伦兹的第二封信中,庞加莱给出了他自己的理由,为什么洛伦兹的时间膨胀因子确实是正确的,毕竟要使洛伦兹变换形成一个群,他还给出了现在所知的<font color="#ff8000">相对论速度加法定律</font>。<ref name="univ-nantes2">{{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.4, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=257–258 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz4.html}}</ref>庞加莱后来在1905年6月5日巴黎科学院会议上发表了一篇论文,其中讨论了这些问题。<ref name="1905 paper">[http://www.academie-sciences.fr/pdf/dossiers/Poincare/Poincare_pdf/Poincare_CR1905.pdf] (PDF) Membres de l'Académie des sciences depuis sa création : Henri Poincare. Sur la dynamique de l' electron. Note de H. Poincaré. C.R. T.140 (1905) 1504–1508.</ref>像其他人一样,庞加莱(1900)发现了质量和电磁能量之间的关系。在研究作用力/反作用力原理和洛伦兹理论之间的冲突时,他试图确定当电磁场包括在内时,重心是否仍以均匀速度运动。能量携带质量和用有争议的乙太解决方案来弥补上述问题的可能性<blockquote>洛伦兹建立的基本点是,电磁场的方程不会因某种形式的变换(我称之为洛伦兹)而改变: |
− | | |
− | 在给洛伦兹的第二封信中,庞加莱给出了他自己的理由,为什么洛伦兹的时间膨胀因子确实是正确的,毕竟要使洛伦兹变换形成一个群,他还给出了现在所知的<font color="#ff8000">相对论速度加法定律</font>。<ref name="univ-nantes2">{{Citation | author=Poincaré, H. | year=2007 | editor=Walter, S. A. | contribution= 38.4, Poincaré to H. A. Lorentz, May 1905 | title=La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs |pages=257–258 |place=Basel | publisher=Birkhäuser|contribution-url=http://henripoincarepapers.univ-nantes.fr/chp/text/lorentz4.html}}</ref> | |
− | | |
− | 庞加莱后来在1905年6月5日巴黎科学院会议上发表了一篇论文,其中讨论了这些问题。<ref name="1905 paper">[http://www.academie-sciences.fr/pdf/dossiers/Poincare/Poincare_pdf/Poincare_CR1905.pdf] (PDF) Membres de l'Académie des sciences depuis sa création : Henri Poincare. Sur la dynamique de l' electron. Note de H. Poincaré. C.R. T.140 (1905) 1504–1508.</ref> | |
− | | |
− | 像其他人一样,庞加莱(1900)发现了质量和电磁能量之间的关系。在研究作用力/反作用力原理和洛伦兹理论之间的冲突时,他试图确定当电磁场包括在内时,重心是否仍以均匀速度运动。能量携带质量和用有争议的乙太解决方案来弥补上述问题的可能性<blockquote>洛伦兹建立的基本点是,电磁场的方程不会因某种形式的变换(我称之为洛伦兹)而改变: | |
| | | |
| ::<math>x^\prime = k\ell\left(x + \varepsilon t\right)\!,\;t^\prime = k\ell\left(t + \varepsilon x\right)\!,\;y^\prime = \ell y,\;z^\prime = \ell z,\;k = 1/\sqrt{1-\varepsilon^2}.</math> | | ::<math>x^\prime = k\ell\left(x + \varepsilon t\right)\!,\;t^\prime = k\ell\left(t + \varepsilon x\right)\!,\;y^\prime = \ell y,\;z^\prime = \ell z,\;k = 1/\sqrt{1-\varepsilon^2}.</math> |
第170行: |
第113行: |
| ====Mass–energy relation质量-能量关系==== | | ====Mass–energy relation质量-能量关系==== |
| 1905年,亨利·庞加莱首次提出引力波(ondes gravifiques),它从物体发出并以光速传播。在公开场合,爱因斯坦在1921年发表的一篇演讲中承认了庞加莱的存在,他在演讲中称之为几何与非欧几里德几何有关,但与狭义相对论无关。在他去世前几年,爱因斯坦评价庞加莱是相对论的先驱之一,他说:“洛伦兹已经认识到以他命名的变换对于分析麦克斯韦方程组是必不可少的,而庞加莱进一步深化了这一见解……” | | 1905年,亨利·庞加莱首次提出引力波(ondes gravifiques),它从物体发出并以光速传播。在公开场合,爱因斯坦在1921年发表的一篇演讲中承认了庞加莱的存在,他在演讲中称之为几何与非欧几里德几何有关,但与狭义相对论无关。在他去世前几年,爱因斯坦评价庞加莱是相对论的先驱之一,他说:“洛伦兹已经认识到以他命名的变换对于分析麦克斯韦方程组是必不可少的,而庞加莱进一步深化了这一见解……” |
| + | |
| | | |
| 像以前的[[质量-能量等效性#电磁静止质量|其他]]一样,庞加莱(1900)发现了质量和电磁能之间的关系。在研究[[牛顿运动定律|作用/反应原理]]和[[洛伦兹以太理论]]之间的冲突时,他试图确定当包含电磁场时,[[重心]]是否仍以匀速运动。<ref name="action" />他注意到作用/反作用原理不仅适用于物质,而且电磁场有其自身的动量。庞加莱得出结论,电磁波的电磁场能量表现为一个虚拟的[[流体]](“流体虚拟”),质量密度为''E''/''c''<sup>2</sup>。如果[[质心框架]]由物质的质量和虚拟流体的质量共同定义,并且如果虚拟流体是不可摧毁的,它既不会被创造也不会被摧毁,那么质量中心框架的运动保持一致。但是电磁能可以转化成其他形式的能量。因此,庞加莱假设在空间的每一点都存在一个非电能流体,它可以将电磁能转化为它,它也携带着与能量成比例的质量。这样,质心的运动保持一致。庞加莱说,人们不应该对这些假设感到太惊讶,因为它们只是数学上的虚构。 | | 像以前的[[质量-能量等效性#电磁静止质量|其他]]一样,庞加莱(1900)发现了质量和电磁能之间的关系。在研究[[牛顿运动定律|作用/反应原理]]和[[洛伦兹以太理论]]之间的冲突时,他试图确定当包含电磁场时,[[重心]]是否仍以匀速运动。<ref name="action" />他注意到作用/反作用原理不仅适用于物质,而且电磁场有其自身的动量。庞加莱得出结论,电磁波的电磁场能量表现为一个虚拟的[[流体]](“流体虚拟”),质量密度为''E''/''c''<sup>2</sup>。如果[[质心框架]]由物质的质量和虚拟流体的质量共同定义,并且如果虚拟流体是不可摧毁的,它既不会被创造也不会被摧毁,那么质量中心框架的运动保持一致。但是电磁能可以转化成其他形式的能量。因此,庞加莱假设在空间的每一点都存在一个非电能流体,它可以将电磁能转化为它,它也携带着与能量成比例的质量。这样,质心的运动保持一致。庞加莱说,人们不应该对这些假设感到太惊讶,因为它们只是数学上的虚构。 |
第175行: |
第119行: |
| 然而,庞加莱的解决方案导致了一个悖论:如果<font color="#ff8000"> 赫兹振子</font>朝某个方向辐射,它将受到虚拟流体惯性的[[反冲]]。庞加莱对移动源的帧执行了[[洛伦兹升压Lorentz boost]](顺序为“v”/“c”)。他指出,能量守恒在这两个框架中都成立,但动量守恒定律被违反了。这就允许了[[永动机]],一个他深恶痛绝的概念。自然法则必须在参照系中有所不同,相对论原理就不成立了。因此,他认为,在这种情况下,<font color="#ff8000"> 乙太</font>中必须有另一种补偿机制。 | | 然而,庞加莱的解决方案导致了一个悖论:如果<font color="#ff8000"> 赫兹振子</font>朝某个方向辐射,它将受到虚拟流体惯性的[[反冲]]。庞加莱对移动源的帧执行了[[洛伦兹升压Lorentz boost]](顺序为“v”/“c”)。他指出,能量守恒在这两个框架中都成立,但动量守恒定律被违反了。这就允许了[[永动机]],一个他深恶痛绝的概念。自然法则必须在参照系中有所不同,相对论原理就不成立了。因此,他认为,在这种情况下,<font color="#ff8000"> 乙太</font>中必须有另一种补偿机制。 |
| | | |
− | 庞加莱在发展狭义相对论方面的工作得到了广泛认可,庞加莱对<font color="#ff8000"> 本地时间</font>进行了类似的物理解释,并注意到了与信号速度的联系,但与爱因斯坦相反,他在论文中继续使用<font color="#ff8000"> 以太</font>的概念,认为静止在以太中的时钟显示“真实”的时间,而移动的时钟显示<font color="#ff8000"> 本地时间</font>。因此庞加莱试图使相对论原理与经典概念保持一致,而爱因斯坦则基于空间和时间相对论的新物理概念,发展了一个与数学等价的运动学。
| |
− |
| |
− | 庞加莱本人在圣路易斯讲座(1904)中又回到了这个话题上。这次(后来也是在1908年),他拒绝了米勒1981年出版的《相对论的第二资源:能量携带质量的可能性》,并批评了以太方案来补偿上述问题。
| |
| | | |
− | 虽然这是大多数历史学家的观点,少数人走得更远,如惠特克,他认为,庞加莱和洛伦兹是真正的相对论发现者。
| + | 庞加莱在发展狭义相对论方面的工作得到了广泛认可,庞加莱对<font color="#ff8000"> 本地时间</font>进行了类似的物理解释,并注意到了与信号速度的联系,但与爱因斯坦相反,他在论文中继续使用<font color="#ff8000"> 以太</font>的概念,认为静止在以太中的时钟显示“真实”的时间,而移动的时钟显示<font color="#ff8000"> 本地时间</font>。因此庞加莱试图使相对论原理与经典概念保持一致,而爱因斯坦则基于空间和时间相对论的新物理概念,发展了一个与数学等价的运动学。庞加莱本人在圣路易斯讲座(1904)中又回到了这个话题上。这次(后来也是在1908年),他拒绝了米勒1981年出版的《相对论的第二资源:能量携带质量的可能性》,并批评了以太方案来补偿上述问题。虽然这是大多数历史学家的观点,少数人走得更远,如惠特克,他认为,庞加莱和洛伦兹是真正的相对论发现者。 |
| | | |
| ====Gravitational waves引力波==== | | ====Gravitational waves引力波==== |
| | | |
− | 这个主题是由 <font color="#ff8000"> 费利克斯·克莱因Felix Klein</font>在他的《爱尔兰根纲领(1872)中明确定义的: 任意连续变换的几何不变量,一种几何学。正如利斯廷所建议的那样,引入了术语“拓扑” ,而不是之前使用的“分析位置”。一些重要的概念是由 恩里科·贝蒂Enrico Betti 和波恩哈德·黎曼介绍的。但是对于任何维度的空间来说,这门科学的基础都是由庞加莱创造的。他的第一篇关于这个主题的文章发表于1894年。 | + | 这个主题是由 <font color="#ff8000"> 费利克斯·克莱因Felix Klein</font>在他的《爱尔兰根纲领(1872)中明确定义的: 任意连续变换的几何不变量,一种几何学。正如利斯廷所建议的那样,引入了术语“拓扑” ,而不是之前使用的“分析位置”。一些重要的概念是由 恩里科·贝蒂Enrico Betti 和波恩哈德·黎曼介绍的。但是对于任何维度的空间来说,这门科学的基础都是由庞加莱创造的。他的第一篇关于这个主题的文章发表于1894年。1905年,亨利·庞加莱首次提出了由物体发出并以光速传播的[[引力波]](“ondes graviques”)。<ref name="“1905" paper”="" />“重要的一点是,检查者必须对重力的作用进行修正。“这是一个假设万有引力传播的管道,它是地球引力传播的一个假设,它是地球引力的一个重要组成部分。”他对几何的研究导致了<font color="#ff8000"> 同伦和同调Homotopy and Homology</font>的抽象拓扑定义。他还首先介绍了组合拓扑的基本概念和不变量,如 贝蒂Betti 数和基本群。证明了 n 维多面体的边数、顶点数和面数的一个公式(欧拉-庞加莱定理) ,给出了直观维数概念的第一个精确表达式。 |
− | | |
− | 1905年,亨利·庞加莱首次提出了由物体发出并以光速传播的[[引力波]](“ondes graviques”)。<ref name="“1905" paper”="" />“重要的一点是,检查者必须对重力的作用进行修正。“这是一个假设万有引力传播的管道,它是地球引力传播的一个假设,它是地球引力的一个重要组成部分。”
| |
− | | |
− | 他对几何的研究导致了<font color="#ff8000"> 同伦和同调Homotopy and Homology</font>的抽象拓扑定义。他还首先介绍了组合拓扑的基本概念和不变量,如 贝蒂Betti 数和基本群。证明了 n 维多面体的边数、顶点数和面数的一个公式(欧拉-庞加莱定理) ,给出了直观维数概念的第一个精确表达式。
| |
| | | |
| ====Poincaré and Einstein庞加莱和爱因斯坦==== | | ====Poincaré and Einstein庞加莱和爱因斯坦==== |
第199行: |
第136行: |
| {{Further|History of special relativity|Relativity priority dispute}} | | {{Further|History of special relativity|Relativity priority dispute}} |
| <nowiki>{{进一步{狭义相对论史{相对论优先权争议}}</nowiki> | | <nowiki>{{进一步{狭义相对论史{相对论优先权争议}}</nowiki> |
| + | |
| | | |
| 庞加莱在狭义相对论的发展中的工作是公认的,<ref name="darrigol" />大多数历史学家强调,尽管与爱因斯坦的工作有许多相似之处,但两人的研究议程和对这项工作的解释截然不同。<ref>Galison 2003 and Kragh 1999, Secondary sources on relativity</ref> 。与爱因斯坦相反,他在论文中继续使用以太的概念,认为以太静止时显示“真实”时间,而移动的时钟显示本地时间。因此,庞加莱试图使相对论原理与经典概念保持一致,而爱因斯坦则基于空间和时间相对论的新物理概念,发展了一种与数学上等价的运动学。 | | 庞加莱在狭义相对论的发展中的工作是公认的,<ref name="darrigol" />大多数历史学家强调,尽管与爱因斯坦的工作有许多相似之处,但两人的研究议程和对这项工作的解释截然不同。<ref>Galison 2003 and Kragh 1999, Secondary sources on relativity</ref> 。与爱因斯坦相反,他在论文中继续使用以太的概念,认为以太静止时显示“真实”时间,而移动的时钟显示本地时间。因此,庞加莱试图使相对论原理与经典概念保持一致,而爱因斯坦则基于空间和时间相对论的新物理概念,发展了一种与数学上等价的运动学。 |
| | | |
− | 这些专著包括一个关于 Poincaré 的想法,这个想法后来成为数学“混沌理论”(特别是庞加莱始态复现定理)和动力系统的一般理论的基础。
| |
− |
| |
− | 庞加莱为引力旋转流体的平衡图撰写了重要的天文学著作。他引入了分岔点的重要概念,证明了非椭球形平衡点的存在性及其稳定性。因为这个发现,庞加莱收到了英国皇家天文学会金质奖章。
| |
| | | |
− | 虽然这是大多数历史学家的观点,但少数人更进一步,比如[[E.T.Whittaker]],他认为庞加莱和洛伦兹才是相对论的真正发现者<ref>Whittaker 1953, Secondary sources on relativity</ref>。
| + | 这些专著包括一个关于 Poincaré 的想法,这个想法后来成为数学“混沌理论”(特别是庞加莱始态复现定理)和动力系统的一般理论的基础。庞加莱为引力旋转流体的平衡图撰写了重要的天文学著作。他引入了分岔点的重要概念,证明了非椭球形平衡点的存在性及其稳定性。因为这个发现,庞加莱收到了英国皇家天文学会金质奖章。虽然这是大多数历史学家的观点,但少数人更进一步,比如[[E.T.Whittaker]],他认为庞加莱和洛伦兹才是相对论的真正发现者<ref>Whittaker 1953, Secondary sources on relativity</ref>。 |
| | | |
| ===Algebra and number theory代数与数论=== | | ===Algebra and number theory代数与数论=== |
| | | |
− | 在为自己关于微分方程系统的奇点研究的博士论文进行辩护之后,庞加莱写了一系列回忆录,题目是《关于微分方程定义的曲线》(1881-1882)。在这些文章中,他建立了一个新的数学分支,称为“定性微分方程理论”。表明,即使微分方程不能用已知函数来求解,但是从方程的形式,可以找到关于解的性质和行为的丰富信息。特别地,庞加莱研究了平面上积分曲线轨迹的性质,给出了<font color="#ff8000">奇点(鞍点、焦点、中心点、节点) Singular points (saddle, focus, center, node)</font>的分类,引入了<font color="#ff8000"> 极限环和环指数Limit cycle and Loop index</font>的概念,并证明了除某些特殊情况外,<font color="#ff8000"> 极限环</font>的个数总是有限的。庞加莱还提出了<font color="#ff8000"> 积分不变量Integral invariants</font>和<font color="#ff8000"> 变分方程Variational equations</font>解的一般理论。对于<font color="#ff8000">有限差分方程 Finite-difference equations</font>,他创造了一个新的方向——解的<font color="#ff8000"> 渐近分析Asymptotic analysis</font>。他应用所有这些成就来研究数学物理和天体力学的实际问题,所使用的方法是其拓扑工作的基础。 | + | 在为自己关于微分方程系统的奇点研究的博士论文进行辩护之后,庞加莱写了一系列回忆录,题目是《关于微分方程定义的曲线》(1881-1882)。在这些文章中,他建立了一个新的数学分支,称为“定性微分方程理论”。表明,即使微分方程不能用已知函数来求解,但是从方程的形式,可以找到关于解的性质和行为的丰富信息。特别地,庞加莱研究了平面上积分曲线轨迹的性质,给出了<font color="#ff8000">奇点(鞍点、焦点、中心点、节点) Singular points (saddle, focus, center, node)</font>的分类,引入了<font color="#ff8000"> 极限环和环指数Limit cycle and Loop index</font>的概念,并证明了除某些特殊情况外,<font color="#ff8000"> 极限环</font>的个数总是有限的。庞加莱还提出了<font color="#ff8000"> 积分不变量Integral invariants</font>和<font color="#ff8000"> 变分方程Variational equations</font>解的一般理论。对于<font color="#ff8000">有限差分方程 Finite-difference equations</font>,他创造了一个新的方向——解的<font color="#ff8000"> 渐近分析Asymptotic analysis</font>。他应用所有这些成就来研究数学物理和天体力学的实际问题,所使用的方法是其拓扑工作的基础。庞加莱把[[群论]]引入物理学,是第一个研究[[洛伦兹变换]群的人。<ref>Poincaré, Selected works in three volumes. page = 682{{full citation needed|date=September 2019}}</ref> 他还对离散群理论及其表示法做出了重大贡献。 |
− | | |
− | 庞加莱把[[群论]]引入物理学,是第一个研究[[洛伦兹变换]群的人。<ref>Poincaré, Selected works in three volumes. page = 682{{full citation needed|date=September 2019}}</ref> 他还对离散群理论及其表示法做出了重大贡献。
| |
| | | |
| ===Topology拓扑学=== | | ===Topology拓扑学=== |
第222行: |
第155行: |
| ===Astronomy and celestial mechanics天文学与天体力学=== | | ===Astronomy and celestial mechanics天文学与天体力学=== |
| | | |
− | [[File:N-body problem (3).gif|frame|left|150px | <center> Chaotic motion in three-body problem (computer simulation).</center>]] | + | [[File:N-body problem (3).gif|frame|left|150px | <center> Chaotic motion in three-body problem (computer simulation).</center>|链接=Special:FilePath/N-body_problem_(3).gif]] |
| | | |
| Photographic portrait of H. Poincaré by Henri Manuel | | Photographic portrait of H. Poincaré by Henri Manuel |
第230行: |
第163行: |
| 庞加莱出版了两本经典专著《天体力学的新方法》(1892-1899)和《天体力学讲座》(1905-1910)。其中,他成功地将他们的研究成果应用于三体的运动问题,并详细研究了解的行为(频率、稳定性、渐近性等)。介绍了<font color="#ff8000">小参数法、不动点、积分不变量、变分方程、渐近展开的收敛性</font>。推广Bruns(1887)的一个理论,庞加莱证明了<font color="#ff8000"> 三体问题</font>是不可积的。换言之,<font color="#ff8000"> 三体问题</font>的一般解不能通过物体的明确坐标和速度用代数函数和超越函数来表示。他在这方面的工作是自[[艾萨克牛顿]]以来在天体力学方面的第一个重大成就。<ref>J. Stillwell, Mathematics and its history, [https://books.google.com/books?id=V7mxZqjs5yUC&pg=PA254 page 254]</ref> | | 庞加莱出版了两本经典专著《天体力学的新方法》(1892-1899)和《天体力学讲座》(1905-1910)。其中,他成功地将他们的研究成果应用于三体的运动问题,并详细研究了解的行为(频率、稳定性、渐近性等)。介绍了<font color="#ff8000">小参数法、不动点、积分不变量、变分方程、渐近展开的收敛性</font>。推广Bruns(1887)的一个理论,庞加莱证明了<font color="#ff8000"> 三体问题</font>是不可积的。换言之,<font color="#ff8000"> 三体问题</font>的一般解不能通过物体的明确坐标和速度用代数函数和超越函数来表示。他在这方面的工作是自[[艾萨克牛顿]]以来在天体力学方面的第一个重大成就。<ref>J. Stillwell, Mathematics and its history, [https://books.google.com/books?id=V7mxZqjs5yUC&pg=PA254 page 254]</ref> |
| | | |
− | 庞加莱的工作习惯被比作一只蜜蜂从一朵花飞到另一朵花。庞加莱对自己的思维方式很感兴趣; 他研究了自己的习惯,并于1908年在巴黎的普通心理学研究所就自己的观察发表了演讲。他把自己的思维方式与他如何做出几项发现联系起来。
| |
− |
| |
− | 这些专著包括了庞加莱的思想,这后来成为数学“[[混沌理论]]”的基础(特别参见[[庞加莱递推定理]])和[[动力系统]]的一般理论
| |
| | | |
− | 庞加莱为引力旋转流体的平衡图写了重要的天文学著作。他引入了<font color="#ff8000"> 分支点</font>的重要概念,证明了非椭球体(包括环形和梨形)等平衡图形的存在性及其稳定性。这项天文发现奖(1900年)被英国皇家天文学会授予。<ref>A. Kozenko, The theory of planetary figures, pages = 25–26{{full citation needed|date=September 2019}}</ref>
| + | 庞加莱的工作习惯被比作一只蜜蜂从一朵花飞到另一朵花。庞加莱对自己的思维方式很感兴趣; 他研究了自己的习惯,并于1908年在巴黎的普通心理学研究所就自己的观察发表了演讲。他把自己的思维方式与他如何做出几项发现联系起来。这些专著包括了庞加莱的思想,这后来成为数学“[[混沌理论]]”的基础(特别参见[[庞加莱递推定理]])和[[动力系统]]的一般理论庞加莱为引力旋转流体的平衡图写了重要的天文学著作。他引入了<font color="#ff8000"> 分支点</font>的重要概念,证明了非椭球体(包括环形和梨形)等平衡图形的存在性及其稳定性。这项天文发现奖(1900年)被英国皇家天文学会授予。<ref>A. Kozenko, The theory of planetary figures, pages = 25–26{{full citation needed|date=September 2019}}</ref> |
| | | |
| ===Differential equations and mathematical physics微分方程与数学物理=== | | ===Differential equations and mathematical physics微分方程与数学物理=== |
第270行: |
第200行: |
| | | |
| *他从来没有在一个问题上花很长时间,因为他相信潜意识会在他有意识地处理另一个问题时继续工作。 | | *他从来没有在一个问题上花很长时间,因为他相信潜意识会在他有意识地处理另一个问题时继续工作。 |
| + | * |
| | | |
| ===Attitude towards transfinite numbers对超限数的态度=== | | ===Attitude towards transfinite numbers对超限数的态度=== |
| + | |
| | | |
| 庞加莱对康托的超限数理论感到沮丧,并称其为一种“疾病” ,数学最终将从中得到治愈。庞加莱说:“没有真正的无限;坎托利亚人忘记了这一点,这就是他们陷入矛盾的原因。”<ref>{{citation | | 庞加莱对康托的超限数理论感到沮丧,并称其为一种“疾病” ,数学最终将从中得到治愈。庞加莱说:“没有真正的无限;坎托利亚人忘记了这一点,这就是他们陷入矛盾的原因。”<ref>{{citation |
第323行: |
第255行: |
| ===Free will自由意志=== | | ===Free will自由意志=== |
| | | |
− | 庞加莱在巴黎心理学学会之前的著名演讲(出版为“[[科学与假设]]”、[[科学的价值]]”和“科学与方法”)被[[Jacques Hadamard]]引用为创意和发明由两个心理阶段组成的思想来源,首先是可能的解决方案的随机组合一个问题,然后是一个批判性的评估<ref>Hadamard, Jacques. ''An Essay on the Psychology of Invention in the Mathematical Field''. Princeton Univ Press (1945)</ref>
| |
− |
| |
− | Although he most often spoke of a deterministic universe, Poincaré said that the subconscious generation of new possibilities involves [[Randomness|chance]].
| |
− | 尽管庞加莱经常谈到确定性宇宙,但他说潜意识中新可能性的产生涉及到[随机性|机会]]。
| |
| | | |
− | 可以肯定的是,在经过一段长时间的无意识工作之后,以一种突然的光明出现在头脑中的组合通常是有用的和富有成效的组合。。。所有的组合都是潜意识自我自动作用的结果,但是那些有趣的组合却进入了意识领域。。。只有少数人是和谐的,因此同时又是有用的和美丽的,它们将能够影响我所说的几何学家的特殊情感;一旦被唤起,就会把我们的注意力引向它们,从而使它们有机会变得有意识。。。与此相反,在潜意识自我中,存在着我称之为自由的统治,如果一个人可以把这个名字命名为纯粹的缺乏纪律和偶然产生的混乱。<ref>{{cite book|title =Science and Method|chapter= 3: Mathematical Creation|date= 1914|chapter-url = https://ebooks.adelaide.edu.au/p/poincare/henri/science-and-method/book1.3.html|first = Henri|last =Poincaré }}</ref>
| + | 庞加莱在巴黎心理学学会之前的著名演讲(出版为“[[科学与假设]]”、[[科学的价值]]”和“科学与方法”)被[[Jacques Hadamard]]引用为创意和发明由两个心理阶段组成的思想来源,首先是可能的解决方案的随机组合一个问题,然后是一个批判性的评估<ref>Hadamard, Jacques. ''An Essay on the Psychology of Invention in the Mathematical Field''. Princeton Univ Press (1945)</ref>Although he most often spoke of a deterministic universe, Poincaré said that the subconscious generation of new possibilities involves [[Randomness|chance]]. |
| + | 尽管庞加莱经常谈到确定性宇宙,但他说潜意识中新可能性的产生涉及到[随机性|机会]]。可以肯定的是,在经过一段长时间的无意识工作之后,以一种突然的光明出现在头脑中的组合通常是有用的和富有成效的组合。。。所有的组合都是潜意识自我自动作用的结果,但是那些有趣的组合却进入了意识领域。。。只有少数人是和谐的,因此同时又是有用的和美丽的,它们将能够影响我所说的几何学家的特殊情感;一旦被唤起,就会把我们的注意力引向它们,从而使它们有机会变得有意识。。。与此相反,在潜意识自我中,存在着我称之为自由的统治,如果一个人可以把这个名字命名为纯粹的缺乏纪律和偶然产生的混乱。<ref>{{cite book|title =Science and Method|chapter= 3: Mathematical Creation|date= 1914|chapter-url = https://ebooks.adelaide.edu.au/p/poincare/henri/science-and-method/book1.3.html|first = Henri|last =Poincaré }}</ref> |
| | | |
− | -----
| + | ==参考文献== |
− | ==Bibliography参考文献== | |
| | | |
− | Other:
| + | ===庞加莱的英语翻译作品=== |
| | | |
− | 其他:
| |
− |
| |
− | ===Poincaré's writings in English translation庞加莱的英语翻译作品===
| |
− |
| |
− |
| |
− |
| |
− | Popular writings on the [[philosophy of science]]:
| |
| 关于[[科学哲学]]的通俗著作: | | 关于[[科学哲学]]的通俗著作: |
− |
| |
− | *{{Citation
| |
− |
| |
− | |author=Poincaré, Henri
| |
− |
| |
− | Exhaustive bibliography of English translations:
| |
− |
| |
− | 详尽的英语翻译书目:
| |
− |
| |
− | |year=1902–1908
| |
− |
| |
− | |title=The Foundations of Science
| |
− |
| |
− | |place=New York
| |
− |
| |
− | |publisher=Science Press
| |
− |
| |
− | |url=https://archive.org/details/foundationsscie01poingoog}}; reprinted in 1921; This book includes the English translations of Science and Hypothesis (1902), The Value of Science (1905), Science and Method (1908).
| |
| | | |
| * 1904. ''Science and Hypothesis,'' The Walter Scott Publishing Co. | | * 1904. ''Science and Hypothesis,'' The Walter Scott Publishing Co. |
− | *1904年“科学与假设”,沃尔特·斯科特出版公司。
| |
| | | |
− | * 1913. "The New Mechanics," The Monist, Vol. XXIII. | + | * 1913. "The New Mechanics," The Monist, Vol. XXIII.《新力学》,《一元论》,第二十三卷。 |
− | *1913年。”《新力学》,《一元论》,第二十三卷。
| + | *1913. "The Relativity of Space," The Monist, Vol. XXIII. 空间的相对性,《一元论》,第二十三卷。 |
− | *1913. "The Relativity of Space," The Monist, Vol. XXIII. | |
− | *1913年。”空间的相对性,《一元论》,第二十三卷。
| |
| *1913. {{Citation | title=Last Essays. |place=New York |publisher=Dover reprint, 1963 | url=https://archive.org/details/mathematicsandsc001861mbp}} | | *1913. {{Citation | title=Last Essays. |place=New York |publisher=Dover reprint, 1963 | url=https://archive.org/details/mathematicsandsc001861mbp}} |
− | *1913年。{{引文|标题=最后一篇论文。|place=New York | publisher=Dover再版,1963 |网址=https://archive.org/details/mathematicsandsc001861mbp}}
| + | *1956. ''Chance.'' In James R. Newman, ed., The World of Mathematics (4 Vols).《机会》,詹姆斯·R·纽曼主编,《数学世界》(4卷)。 |
− | *1956. ''Chance.'' In James R. Newman, ed., The World of Mathematics (4 Vols). | + | *1958. ''The Value of Science,'' New York: Dover.《科学的价值》,纽约:多佛。 |
− | *1956年《机会》,詹姆斯·R·纽曼主编,《数学世界》(4卷)。
| + | |
− | *1958. ''The Value of Science,'' New York: Dover. | |
− | *1958年《科学的价值》,纽约:多佛。
| |
| | | |
− | On [[algebraic topology]]:
| |
| 关于[[代数拓扑]]: | | 关于[[代数拓扑]]: |
| | | |
第383行: |
第280行: |
| | url=http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf}}. The first systematic study of [[topology]]. | | | url=http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf}}. The first systematic study of [[topology]]. |
| | | |
| + | 关于[[天体力学]]: |
| | | |
| + | * 1892–99. ''New Methods of Celestial Mechanics'', 3 vols. English trans., 1967. 《天体力学新方法》,3卷。英语译本,1967年。 |
| + | * 1905. "The Capture Hypothesis of J. J. See," The Monist, Vol. XV. J.J.的捕获假说,见《一元论》,第十五卷。 |
| + | * 1905–10. ''Lessons of Celestial Mechanics''.“天体力学课程”。 |
| | | |
− | On [[celestial mechanics]]:
| |
− | 关于[[天体力学]]:
| |
− |
| |
− | * 1892–99. ''New Methods of Celestial Mechanics'', 3 vols. English trans., 1967. {{isbn|1-56396-117-2}}.
| |
− | *1892-1899年。”天体力学新方法》,3卷。英语译本,1967年。{{isbn | 1-56396-117-2}}。
| |
− | * 1905. "The Capture Hypothesis of J. J. See," The Monist, Vol. XV.
| |
− | *1905年。”J.J.的捕获假说,见《一元论》,第十五卷。
| |
− | * 1905–10. ''Lessons of Celestial Mechanics''.
| |
− | *1905-10年。”天体力学课程”。
| |
| | | |
− | On the [[philosophy of mathematics]]:
| |
| 关于[[数学哲学]]: | | 关于[[数学哲学]]: |
− | * Ewald, William B., ed., 1996. ''From Kant to Hilbert: A Source Book in the Foundations of Mathematics'', 2 vols. Oxford Univ. Press. Contains the following works by Poincaré: | + | *伊瓦尔德,威廉B.,编辑,1996年从康德到希尔伯特:数学基础中的一本原著,2卷。牛津大学出版社。包含庞加莱的以下作品: |
| + | ** 1894, "On the Nature of Mathematical Reasoning," 972–81.“论数学推理的本质”,972-81。 |
| + | ** 1898, "On the Foundations of Geometry," 982–1011.《几何基础》,982-1011年。 |
| + | ** 1900, "Intuition and Logic in Mathematics," 1012–20.“数学中的直觉和逻辑”,1012-20。 |
| + | ** 1905–06, "Mathematics and Logic, I–III," 1021–70.“数学与逻辑,I–III”,1021–70。 |
| + | ** 1910, "On Transfinite Numbers," 1071–74.“关于超限数”,1071-74。 |
| + | **1905. "The Principles of Mathematical Physics," The Monist, Vol. XV.《数学物理原理》,《一元论》,第十五卷。 |
| + | ** 1910. "The Future of Mathematics," The Monist, Vol. XX.《数学的未来》,《一元论》,第二十卷。 |
| + | **1910. "Mathematical Creation," The Monist, Vol. XX.《数学创造》,《一元论》,第二十卷。 |
| | | |
− | *伊瓦尔德,威廉B.,编辑,1996年从康德到希尔伯特:数学基础中的一本原著,2卷。牛津大学出版社。包含庞加莱的以下作品:
| |
− | ** 1894, "On the Nature of Mathematical Reasoning," 972–81.
| |
− | **1894年,“论数学推理的本质”,972-81。
| |
− | ** 1898, "On the Foundations of Geometry," 982–1011.
| |
− | **1898年,《几何基础》,982-1011年。
| |
− | ** 1900, "Intuition and Logic in Mathematics," 1012–20.
| |
− | **1900年,“数学中的直觉和逻辑”,1012-20。
| |
− | ** 1905–06, "Mathematics and Logic, I–III," 1021–70.
| |
− | **1905年至1906年,“数学与逻辑,I–III”,1021–70。
| |
− | ** 1910, "On Transfinite Numbers," 1071–74.
| |
− | **1910年,“关于超限数”,1071-74。
| |
− | *1905. "The Principles of Mathematical Physics," The Monist, Vol. XV.
| |
− | *1905年。”《数学物理原理》,《一元论》,第十五卷。
| |
− | * 1910. "The Future of Mathematics," The Monist, Vol. XX.
| |
− | *1910年。”《数学的未来》,《一元论》,第二十卷。
| |
− | *1910. "Mathematical Creation," The Monist, Vol. XX.
| |
− | *1910年。”《数学创造》,《一元论》,第二十卷。
| |
| | | |
− | Other:
| |
| 其他: | | 其他: |
− | * 1904. ''Maxwell's Theory and Wireless Telegraphy,'' New York, McGraw Publishing Company. | + | * 1904. ''Maxwell's Theory and Wireless Telegraphy,'' New York, McGraw Publishing Company.《麦克斯韦理论与无线电报》,纽约,麦格劳出版公司。 |
− | *1904年《麦克斯韦理论与无线电报》,纽约,麦格劳出版公司。
| + | * 1905. "The New Logics," The Monist, Vol. XV.《新逻辑学》,《一元论》,第十五卷。 |
− | * 1905. "The New Logics," The Monist, Vol. XV. | + | * 1905. "The Latest Efforts of the Logisticians," The Monist, Vol. XV.《后勤人员的最新努力》,《一元论》,第十五卷。 |
− | *1905年。”《新逻辑学》,《一元论》,第十五卷。
| |
− | * 1905. "The Latest Efforts of the Logisticians," The Monist, Vol. XV. | |
− | *1905年。”《后勤人员的最新努力》,《一元论》,第十五卷。
| |
− | | |
− | | |
− | Exhaustive bibliography of English translations:
| |
− | | |
− | {{Columns-list|colwidth=30em|
| |
− | | |
− | {{ Columns-list | colwidth = 30em |
| |
− | | |
− | * 1892–2017. {{Citation |title=Henri Poincaré Papers |url=http://henripoincarepapers.univ-nantes.fr/bibliohp/index.php?a=on&lang=en&action=Chercher }}{{Dead link|date=May 2020 |bot=InternetArchiveBot |fix-attempted=yes }}.
| |
− | | |
− | | |
− | | |
− | ==See also请参阅==
| |
− | | |
− | ===Concepts概念===
| |
− | | |
− | * [[Poincaré complex]] – an abstraction of the singular chain complex of a closed, orientable manifold
| |
− | *[[Poincarécomplex]]——封闭可定向流形的奇异链复形的抽象
| |
− | * [[Poincaré duality]]
| |
− | *[[庞加莱双重性]]
| |
− | * [[Poincaré disk model]]
| |
− | *[[庞加莱磁盘模型]]
| |
− | * [[Poincaré group]]
| |
− | *[[庞加莱集团]]
| |
− | | |
− | }}
| |
− | | |
− | }}
| |
| | | |
| *[[Poincaré half-plane model]] | | *[[Poincaré half-plane model]] |
第490行: |
第340行: |
| ===Theorems理论=== | | ===Theorems理论=== |
| | | |
− | |title=Henri Poincaré. A Life in the Service of Science
| + | 为科学服务的一生 |
− | | |
− | |title=Henri Poincaré.为科学服务的一生
| |
| | | |
| *[[Poincaré's recurrence theorem]]: certain systems will, after a sufficiently long but finite time, return to a state very close to the initial state. | | *[[Poincaré's recurrence theorem]]: certain systems will, after a sufficiently long but finite time, return to a state very close to the initial state. |