第1行: |
第1行: |
| 此词条暂由南风翻译。已由Smile审校 | | 此词条暂由南风翻译。已由Smile审校 |
− | {{NoteTA|G1=Math | + | {{short description|Probability distribution}} |
− | |T=zh-tw:二項式分布;zh-cn:二项分布 | + | |
− | |1=zh-hant:參數;zh-cn:参数;zh-tw:母數
| + | {{Redirect|Binomial model|the binomial model in options pricing|Binomial options pricing model}} |
− | |2= zh-cn:泊松; zh-tw:卜瓦松; zh-hk:泊松;
| + | |
− | |3=zh-hant:二項分布;zh-tw:二項式分布;zh-cn:二项分布
| + | {{see also|Negative binomial distribution}} |
− | |4= zh-hans:矩; zh-tw:動差;zh-hant:矩
| + | |
− | }}
| + | <!-- EDITORS! Please see [[Wikipedia:WikiProject Probability#Standards]] for a discussion of standards used for probability distribution articles such as this one. |
− | {{Infobox 機率分佈 | + | |
− | |name =二項分布 | + | <!-- EDITORS! Please see Wikipedia:WikiProject Probability#Standards for a discussion of standards used for probability distribution articles such as this one. |
− | |type =質量 | + | |
| + | < ! – 本文编辑,参见讨论概率分布使用标准的文章[[Wikipedia: WikiProject Probability # standards]]。 |
| + | |
| + | --> |
| + | |
| + | --> |
| + | |
| + | --> |
| + | |
| + | {{Probability distribution |
| + | |
| + | {{Probability distribution |
| + | |
| + | <font color="#ff8000">概率分布 Probability distribution </font> |
| + | |
| + | | name = Binomial distribution |
| + | |
| + | | name = Binomial distribution |
| + | |
| + | 名称 = <font color="#ff8000">二项分布 Binomial distribution </font> |
| + | |
| + | | type = mass |
| + | |
| + | | type = mass |
| + | |
| + | 类型 = 质量,这里指<font color="#ff8000">离散型 discrete</font> |
| + | |
| | pdf_image = [[File:Binomial distribution pmf.svg|300px|Probability mass function for the binomial distribution]] | | | pdf_image = [[File:Binomial distribution pmf.svg|300px|Probability mass function for the binomial distribution]] |
| + | |
| + | | pdf_image = Probability mass function for the binomial distribution |
| + | |
| + | | 概率质量函数图像 = '''<font color="#ff8000">二项分布的概率质量函数 Probability mass function for the binomial distribution </font>''' |
| + | |
| | cdf_image = [[File:Binomial distribution cdf.svg|300px|Cumulative distribution function for the binomial distribution]] | | | cdf_image = [[File:Binomial distribution cdf.svg|300px|Cumulative distribution function for the binomial distribution]] |
− | | notation = ''B''(''n'', ''p'') | + | |
− | |parameters =<math>n \geq 0</math> 试验次数 ([[整数]])<br /><math>0\leq p \leq 1</math> 成功概率 ([[实数]]) | + | | cdf_image = Cumulative distribution function for the binomial distribution |
− | |support =<math>k \in \{0,\dots,n\}\!</math> | + | |
− | |pdf =<math>{n\choose k} p^k (1-p)^{n-k} \!</math> | + | | 累积分布函数图像 = '''<font color="#ff8000">二项分布的累积分布函数 Cumulative distribution function for the binomial distribution </font>''' |
− | |cdf =<math>I_{1-p}(n-\lfloor k\rfloor, 1+\lfloor k\rfloor) \!</math> | + | | notation = <math>B(n,p)</math> |
− | |mean =<math>n\,p\!</math> | + | |
− | |median =<math>\{\lfloor np\rfloor, \lceil (n+1)p \rceil\}</math>之一 | + | | notation = B(n,p) |
− | |mode =<math>\lfloor (n+1)\,p\rfloor\!</math>或<math>\lfloor (n+1)\,p\rfloor\!-1</math> | + | |
− | |variance =<math>n\,p\,(1-p)\!</math> | + | | 符号 = <math>B(n,p)</math> |
− | |skewness =<math>\frac{1-2\,p}{\sqrt{n\,p\,(1-p)}}\!</math> | + | |
− | |kurtosis =<math>\frac{1-6\,p\,(1-p)}{n\,p\,(1-p)}\!</math> | + | | parameters = <math>n \in \{0, 1, 2, \ldots\}</math> – number of trials<br /><math>p \in [0,1]</math> – success probability for each trial<br /><math>q = 1 - p</math> |
− | |entropy =<math>\frac{1}{2} \ln \left( 2 \pi n e p (1-p) \right) + O \left( \frac{1}{n} \right)\!</math> | + | |
− | |mgf =<math>(1-p + p\,e^t)^n \!</math> | + | | parameters = n \in \{0, 1, 2, \ldots\} – number of trials<br />p \in [0,1] – success probability for each trial<br />q = 1 - p |
− | |char =<math>(1-p + p\,e^{i\,t})^n \!</math> | + | |
| + | | 参数 = <br /><math>n \in \{0, 1, 2, \ldots\}</math> – --- 试验次数; <br /><math>p \in [0,1]</math> – -- 每个试验的成功概率; <br /><math>q = 1 - p</math> |
| + | |
| + | | support = <math>k \in \{0, 1, \ldots, n\}</math> – number of successes |
| + | |
| + | | support = k \in \{0, 1, \ldots, n\} – number of successes |
| + | |
| + | | 支持 = <br /><math>k \in \{0, 1, \ldots, n\}</math> – --- 成功的数量 |
| + | |
| + | | pdf = <math>\binom{n}{k} p^k q^{n-k}</math> |
| + | |
| + | | pdf = \binom{n}{k} p^k q^{n-k} |
| + | |
| + | |<font color="#ff8000">概率质量函数 Probability mass function </font> = <math>\binom{n}{k} p^k q^{n-k}</math> |
| + | |
| + | | cdf = <math>I_{q}(n - k, 1 + k)</math> |
| + | |
| + | | cdf = I_{q}(n - k, 1 + k) |
| + | |
| + | | <font color="#ff8000">累积分布函数 Cumulative distribution function </font> = <math>I_{q}(n - k, 1 + k)</math> |
| + | |
| + | | mean = <math>np</math> |
| + | |
| + | | mean = np |
| + | |
| + | <font color="#ff8000">平均值 mean</font> = <math>np</math> |
| + | |
| + | | median = <math>\lfloor np \rfloor</math> or <math>\lceil np \rceil</math> |
| + | |
| + | | median = \lfloor np \rfloor or \lceil np \rceil |
| + | |
| + | <font color="#ff8000">中位数 median</font> = <math>\lfloor np \rfloor</math> 或 <math>\lceil np \rceil</math> |
| + | |
| + | | mode = <math>\lfloor (n + 1)p \rfloor</math> or <math>\lceil (n + 1)p \rceil - 1</math> |
| + | |
| + | | mode = \lfloor (n + 1)p \rfloor or \lceil (n + 1)p \rceil - 1 |
| + | |
| + | | <font color="#ff8000">模 mode</font> = <math>\lfloor (n + 1)p \rfloor</math> 或 <math>\lceil (n + 1)p \rceil - 1</math> |
| + | |
| + | | variance = <math>npq</math> |
| + | |
| + | | variance = npq |
| + | |
| + | | <font color="#ff8000">方差 variance</font> = <math>npq</math> |
| + | |
| + | | skewness = <math>\frac{q-p}{\sqrt{npq}}</math> |
| + | |
| + | | skewness = \frac{q-p}{\sqrt{npq}} |
| + | |
| + | | <font color="#ff8000">偏度 skewness</font> = <math>\frac{q-p}{\sqrt{npq}}</math> |
| + | |
| + | | kurtosis = <math>\frac{1-6pq}{npq}</math> |
| + | |
| + | | kurtosis = \frac{1-6pq}{npq} |
| + | |
| + | | <font color="#ff8000">峰度 kurtosis</font> = <math>\frac{1-6pq}{npq}</math> |
| + | |
| + | | entropy = <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math><br /> in [[Shannon (unit)|shannons]]. For [[nat (unit)|nats]], use the natural log in the log. |
| + | |
| + | | entropy = \frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)<br /> in shannons. For nats, use the natural log in the log. |
| + | |
| + | | <font color="#ff8000">熵 entropy</font> = <math>\frac{1}{2} \log_2 (2\pi enpq) + O \left( \frac{1}{n} \right)</math>用<font color="#ff8000">香农熵 Shannon entropy</font>测量。对于<font color="#ff8000">分布式消息队列系统 NATS </font>,使用日志中的自然日志。 |
| + | |
| + | | mgf = <math>(q + pe^t)^n</math> |
| + | |
| + | | mgf = (q + pe^t)^n |
| + | |
| + | | <font color="#ff8000">矩量母函数 Moment Generating Function</font> = <math>(q + pe^t)^n</math> |
| + | |
| + | | char = <math>(q + pe^{it})^n</math> |
| + | |
| + | | char = (q + pe^{it})^n |
| + | |
| + | | <font color="#ff8000">特征函数 characteristic function</font> = <math>(q + pe^{it})^n</math> |
| + | |
| + | | pgf = <math>G(z) = [q + pz]^n</math> |
| + | |
| + | | pgf = G(z) = [q + pz]^n |
| + | |
| + | | <font color="#ff8000">概率母函数 probability generating function</font> = <math>G(z) = [q + pz]^n</math> |
| + | |
| + | | fisher = <math> g_n(p) = \frac{n}{pq} </math><br />(for fixed <math>n</math>) |
| + | |
| + | | fisher = g_n(p) = \frac{n}{pq} <br />(for fixed n) |
| + | |
| + | | <font color="#ff8000">费雪信息量 fisher information</font> = <math> g_n(p) = \frac{n}{pq} </math><br />(对于固定的 <math>n</math>) |
| + | |
| + | }} |
| + | |
| }} | | }} |
| | | |