第35行: |
第35行: |
| ===分类=== | | ===分类=== |
| | | |
− | 随机过程可以用不同的方法进行分类,例如,根据其状态空间、索引集或随机变量之间的相关性。一种常见的分类方法是通过索引集和状态空间的[[基数]]进行分类。<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=26}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|pages=24, 25}}</ref>
| + | 随机过程可以用不同的方法进行分类,例如,根据其状态空间、索引集或随机变量之间的相关性。一种常见的分类方法是通过索引集和状态空间的基数进行分类。<ref name="Florescu2014page294"/><ref name="KarlinTaylor2012page26">{{cite book|author1=Samuel Karlin|author2=Howard E. Taylor|title=A First Course in Stochastic Processes|url=https://books.google.com/books?id=dSDxjX9nmmMC|year=2012|publisher=Academic Press|isbn=978-0-08-057041-9|page=26}}</ref><ref>{{cite book|author1=Donald L. Snyder|author2=Michael I. Miller|title=Random Point Processes in Time and Space|url=https://books.google.com/books?id=c_3UBwAAQBAJ|year=2012|publisher=Springer Science & Business Media|isbn=978-1-4612-3166-0|pages=24, 25}}</ref> |
| | | |
| | | |
− | 当解释为时间时,如果随机过程的指标集有有限个或可数个元素,例如有限的一组数、一组整数或自然数,那么随机过程被称为离散时间<ref name="Billingsley2008page482"/><ref name="Borovkov2013page527">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=527}}</ref> 。如果索引集是实数轴上的某个区间,则时间被称为连续时间。这两类随机过程分别被称为'''离散时间随机过程'''和'''连续时间随机过程'''<ref name="KarlinTaylor2012page27"/><ref name="Brémaud2014page120"/><ref name="Rosenthal2006page177">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|pages=177–178}}</ref>。离散时间随机过程被认为更容易研究,因为连续时间过程需要更先进的数学技术和知识,特别当索引集不可数时。<ref name="KloedenPlaten2013page63">{{cite book|author1=Peter E. Kloeden|author2=Eckhard Platen|title=Numerical Solution of Stochastic Differential Equations|url=https://books.google.com/books?id=r9r6CAAAQBAJ=PA1|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-12616-5|page=63}}</ref><ref name="Khoshnevisan2006page153">{{cite book|author=Davar Khoshnevisan|title=Multiparameter Processes: An Introduction to Random Fields|url=https://books.google.com/books?id=XADpBwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21631-7|pages=153–155}}</ref> 如果索引集是整数或整数的子集,则随机过程也可以称为'''随机序列 random sequence'''。<ref name=“Borovkov2013page527”/> | + | 当解释为时间时,如果随机过程的指标集有有限个或可数个元素,例如有限的一组数、一组整数或自然数,那么随机过程被称为离散时间<ref name="Billingsley2008page482"/><ref name="Borovkov2013page527">{{cite book|author=Alexander A. Borovkov|title=Probability Theory|url=https://books.google.com/books?id=hRk_AAAAQBAJ|year=2013|publisher=Springer Science & Business Media|isbn=978-1-4471-5201-9|page=527}}</ref> 。如果索引集是实数轴上的某个区间,则时间被称为连续时间。这两类随机过程分别被称为'''离散时间随机过程'''和'''连续时间随机过程'''<ref name="KarlinTaylor2012page27"/><ref name="Brémaud2014page120"/><ref name="Rosenthal2006page177">{{cite book|author=Jeffrey S Rosenthal|title=A First Look at Rigorous Probability Theory|url=https://books.google.com/books?id=am1IDQAAQBAJ|year=2006|publisher=World Scientific Publishing Co Inc|isbn=978-981-310-165-4|pages=177–178}}</ref>。离散时间随机过程被认为更容易研究,因为连续时间过程需要更先进的数学技术和知识,特别当索引集不可数时。<ref name="KloedenPlaten2013page63">{{cite book|author1=Peter E. Kloeden|author2=Eckhard Platen|title=Numerical Solution of Stochastic Differential Equations|url=https://books.google.com/books?id=r9r6CAAAQBAJ=PA1|year=2013|publisher=Springer Science & Business Media|isbn=978-3-662-12616-5|page=63}}</ref><ref name="Khoshnevisan2006page153">{{cite book|author=Davar Khoshnevisan|title=Multiparameter Processes: An Introduction to Random Fields|url=https://books.google.com/books?id=XADpBwAAQBAJ|year=2006|publisher=Springer Science & Business Media|isbn=978-0-387-21631-7|pages=153–155}}</ref> 如果索引集是整数或整数的子集,则随机过程也可以称为'''随机序列 random sequence'''。<ref name="Borovkov2013page527"/> |
| | | |
| | | |
− | 如果状态空间是整数或自然数,则随机过程称为“离散随机过程”或“整值随机过程”。如果状态空间是实数轴,则随机过程被称为“实值随机过程”或“具有连续状态空间的过程”。如果状态空间是<math>n</math>-维欧几里德空间,则随机过程称为<math>n</math>-“维向量过程”或<math>n</math>—“向量过程”。<ref name=“florescu214page294”/><ref name=“KarlinTaylor2012page26”/> | + | 如果状态空间是整数或自然数,则随机过程称为“离散随机过程”或“整值随机过程”。如果状态空间是实数轴,则随机过程被称为“实值随机过程”或“具有连续状态空间的过程”。如果状态空间是<math>n</math>-维欧几里德空间,则随机过程称为<math>n</math>-“维向量过程”或<math>n</math>—“向量过程”。<ref name="florescu214page294"/><ref name="KarlinTaylor2012page26"/> |
| | | |
| + | <br> |
| | | |
| ===词源学=== | | ===词源学=== |