第1行: |
第1行: |
− | 此词条暂由水流心不竞初译,由和光同尘审校,由Lunji编辑。
| + | |
| | | |
| 在动力系统的数学领域中,'''吸引子 attractor'''是系统在众多初始条件下所趋向的一组数值。即使稍微受到干扰,与吸引子的值接近的系统值仍然能够保证近似性。 | | 在动力系统的数学领域中,'''吸引子 attractor'''是系统在众多初始条件下所趋向的一组数值。即使稍微受到干扰,与吸引子的值接近的系统值仍然能够保证近似性。 |
| + | |
| | | |
| 在'''有限维系统 finite-dimensional systems'''中,演化变量可用代数表示为 n 维向量。吸引子是n维空间中的一个区域。在物理系统中,n维可以是一个或多个物理实体的两个或三个位置坐标;在经济系统中,它们可以是单独的变量,如'''通货膨胀率 inflation rate'''和'''失业率 unemployment rate'''。 | | 在'''有限维系统 finite-dimensional systems'''中,演化变量可用代数表示为 n 维向量。吸引子是n维空间中的一个区域。在物理系统中,n维可以是一个或多个物理实体的两个或三个位置坐标;在经济系统中,它们可以是单独的变量,如'''通货膨胀率 inflation rate'''和'''失业率 unemployment rate'''。 |
| + | |
| | | |
| 如果演化变量是二维或三维的,则动态过程的吸引子可以用几何方式表示为二维或三维(例如右图所示的三维情况)。一个吸引子可以是一个点,一个有限的点集,一条曲线,一个流形,甚至是一个具有分形结构的复杂集合——我们称之为'''奇异吸引子 strange attractor'''(见下面的奇异吸引子)。如果变量是标量,那么吸引子就是实轴的子集。描述'''混沌动力学系统 chaotic dynamical systems'''的吸引子是混沌理论的重要成果之一。 | | 如果演化变量是二维或三维的,则动态过程的吸引子可以用几何方式表示为二维或三维(例如右图所示的三维情况)。一个吸引子可以是一个点,一个有限的点集,一条曲线,一个流形,甚至是一个具有分形结构的复杂集合——我们称之为'''奇异吸引子 strange attractor'''(见下面的奇异吸引子)。如果变量是标量,那么吸引子就是实轴的子集。描述'''混沌动力学系统 chaotic dynamical systems'''的吸引子是混沌理论的重要成果之一。 |
| + | |
| | | |
| 动力系统在吸引子中的轨迹,若时间向前,不必满足任何特殊的约束条件。轨迹可能是周期性的,也可能是混沌的。如果一组点是周期性的或混沌的,但其附近的流远离该集合,则该集合不是吸引子,而是'''排斥点(或斥点) repeller(or repellor)''' | | 动力系统在吸引子中的轨迹,若时间向前,不必满足任何特殊的约束条件。轨迹可能是周期性的,也可能是混沌的。如果一组点是周期性的或混沌的,但其附近的流远离该集合,则该集合不是吸引子,而是'''排斥点(或斥点) repeller(or repellor)''' |
| + | |
| | | |
| ==吸引子的提出动机== | | ==吸引子的提出动机== |
| 我们通常用一个或多个微分方程或差分方程描述动力系统。一个给定动力系统的方程可以表明它在任何给定短时间内的行为。为了确定系统在较长时间内的行为,我们往往需要通过分析手段或'''迭代 Iteration'''(通常借助于计算机)来对方程进行积分。 | | 我们通常用一个或多个微分方程或差分方程描述动力系统。一个给定动力系统的方程可以表明它在任何给定短时间内的行为。为了确定系统在较长时间内的行为,我们往往需要通过分析手段或'''迭代 Iteration'''(通常借助于计算机)来对方程进行积分。 |
| + | |
| | | |
| 物理世界中的动力系统往往产生于'''耗散系统 dissipative system''':如果没有某种驱动力,运动就会停止。(耗散可能来自内部摩擦,热力学损失,材料损失等许多原因。)当耗散和驱动力趋于平衡时,'''初始瞬态 Initial transients'''会被消除,使系统进入其典型状态。与典型状态相对应的动力系统相空间的子集是'''吸引子'''——也称为吸引部分。 | | 物理世界中的动力系统往往产生于'''耗散系统 dissipative system''':如果没有某种驱动力,运动就会停止。(耗散可能来自内部摩擦,热力学损失,材料损失等许多原因。)当耗散和驱动力趋于平衡时,'''初始瞬态 Initial transients'''会被消除,使系统进入其典型状态。与典型状态相对应的动力系统相空间的子集是'''吸引子'''——也称为吸引部分。 |
| + | |
| | | |
| '''不变集 Invariant sets'''和'''极限集 limit sets'''的概念与吸引子类似。不变集是在动力学作用下向自身演化的集合。<ref>{{cite book|author1=Carvalho, A.|author2=Langa, J.A.|author3=Robinson, J.|year=2012|title=Attractors for infinite-dimensional non-autonomous dynamical systems|volume=182|publisher=Springer|p=109}}</ref>不变集可能包含于吸引子。极限集是一组点,这些点存在一定的初始状态,但是随着最终时间趋近无穷远时将任意接近极限集(即收敛到集合的每个点)。吸引子是极限集,但不是所有的极限集都是吸引子: 系统的某些点可能会收敛到极限集,但是稍微偏离极限集的点可能会被敲掉,永远不会回到极限集附近。 | | '''不变集 Invariant sets'''和'''极限集 limit sets'''的概念与吸引子类似。不变集是在动力学作用下向自身演化的集合。<ref>{{cite book|author1=Carvalho, A.|author2=Langa, J.A.|author3=Robinson, J.|year=2012|title=Attractors for infinite-dimensional non-autonomous dynamical systems|volume=182|publisher=Springer|p=109}}</ref>不变集可能包含于吸引子。极限集是一组点,这些点存在一定的初始状态,但是随着最终时间趋近无穷远时将任意接近极限集(即收敛到集合的每个点)。吸引子是极限集,但不是所有的极限集都是吸引子: 系统的某些点可能会收敛到极限集,但是稍微偏离极限集的点可能会被敲掉,永远不会回到极限集附近。 |
| + | |
| | | |
| 例如,'''阻尼摆 damped pendulum'''有两个不变点: 最小高度点{{math|x<sub>0</sub>}}和最大高度点{{math|x<sub>1</sub>}}。点{{math|x<sub>0</sub>}}也是一个极限集,因为轨迹向它收敛;点 {{math|x<sub>1</sub>}}不是一个极限集。由于空气阻力的耗散,点{{math|x<sub>0</sub>}}也是吸引子。如果没有耗散,{{math|x<sub>0</sub>}}就不会出现吸引子。亚里士多德 Aristotle认为物体只有在被推动时才会移动——这是'''耗散吸引子 dissipative attractor'''的早期表述。 | | 例如,'''阻尼摆 damped pendulum'''有两个不变点: 最小高度点{{math|x<sub>0</sub>}}和最大高度点{{math|x<sub>1</sub>}}。点{{math|x<sub>0</sub>}}也是一个极限集,因为轨迹向它收敛;点 {{math|x<sub>1</sub>}}不是一个极限集。由于空气阻力的耗散,点{{math|x<sub>0</sub>}}也是吸引子。如果没有耗散,{{math|x<sub>0</sub>}}就不会出现吸引子。亚里士多德 Aristotle认为物体只有在被推动时才会移动——这是'''耗散吸引子 dissipative attractor'''的早期表述。 |
| + | |
| | | |
| 有些吸引子是混沌的(参见奇异吸引子),在这种情况下,吸引子的任意两个不同点的演化都会触发指数发散轨迹。此时即使系统中有一点噪声,预测也会因此而变得复杂。<ref>{{cite book|author1=Kantz, H.|author2=Schreiber, T.|year=2004|title=Nonlinear time series analysis|publisher=Cambridge university press}}</ref> | | 有些吸引子是混沌的(参见奇异吸引子),在这种情况下,吸引子的任意两个不同点的演化都会触发指数发散轨迹。此时即使系统中有一点噪声,预测也会因此而变得复杂。<ref>{{cite book|author1=Kantz, H.|author2=Schreiber, T.|year=2004|title=Nonlinear time series analysis|publisher=Cambridge university press}}</ref> |
| + | |
| | | |
| ==数学定义== | | ==数学定义== |
| 设t表示时间,设f(t,•)为指定系统动力学的函数。也就是说,如果a是n维相空间中一个表示系统初始状态的点,那么f(0,a)=a。对于t的正值,f(t,a)是该状态在t个时间单位之后演化的结果。例如,如果系统描述了自由粒子在一维空间中的演化,那么相空间是坐标为(x,v)的平面 '''R'''<sup>2</sup> ,其中x是粒子的位置,v是粒子的速度,a = (x,v),由以下给出 | | 设t表示时间,设f(t,•)为指定系统动力学的函数。也就是说,如果a是n维相空间中一个表示系统初始状态的点,那么f(0,a)=a。对于t的正值,f(t,a)是该状态在t个时间单位之后演化的结果。例如,如果系统描述了自由粒子在一维空间中的演化,那么相空间是坐标为(x,v)的平面 '''R'''<sup>2</sup> ,其中x是粒子的位置,v是粒子的速度,a = (x,v),由以下给出 |
| | | |
− | [[资料图:茱莉亚即时盆地1 3.png |右|拇指|吸引周期-3旋回及其对“f”(“z”)参数化的直接吸引域。三个最暗的点是3循环的点,它们按顺序相互连接,从吸引域中的任何点迭代都会(通常是渐进的)收敛到这三个点的序列。]] | + | [[file:Julia_immediate_basin_1_3.png |右|拇指|吸引周期-3旋回及其对“f”(“z”)参数化的直接吸引域。三个最暗的点是3循环的点,它们按顺序相互连接,从吸引域中的任何点迭代都会(通常是渐进的)收敛到这三个点的序列。]] |
| | | |
| f(z) = z<sup>2</sup> + c某一特定参数的吸引3-周期循环及其直接吸引池。最暗的三个点是3-周期循环的点,它们依次引出,从吸引域中的任何一点迭代都会(通常是渐近的)收敛到这三个点的序列。 | | f(z) = z<sup>2</sup> + c某一特定参数的吸引3-周期循环及其直接吸引池。最暗的三个点是3-周期循环的点,它们依次引出,从吸引域中的任何一点迭代都会(通常是渐近的)收敛到这三个点的序列。 |
第36行: |
第45行: |
| | | |
| * “A”中不存在具有前两个属性的真(非空)子集。 | | * “A”中不存在具有前两个属性的真(非空)子集。 |
| + | |
| | | |
| 由于吸引域包含一个含有“A”的开集合,所以每一个足够接近“A”的点都会被“A”吸引。吸引子的定义使用了相空间上的一个度量,但得到的结果通常只取决于相空间的拓扑结构。在R<sup>n</sup>的情况下,我们通常会使用'''欧氏范数 Euclidean norm。 | | 由于吸引域包含一个含有“A”的开集合,所以每一个足够接近“A”的点都会被“A”吸引。吸引子的定义使用了相空间上的一个度量,但得到的结果通常只取决于相空间的拓扑结构。在R<sup>n</sup>的情况下,我们通常会使用'''欧氏范数 Euclidean norm。 |
| + | |
| | | |
| 在文献中有吸引子的其他定义出现。例如,一些作者要求吸引子具有正测度(防止一个点成为吸引子),另一些作者则弱化了B(A)作为一个邻域的要求。<ref>{{cite journal | author=John Milnor | author-link=John Milnor | title= On the concept of attractor | journal=Communications in Mathematical Physics | year=1985 | volume=99 | pages=177–195| doi= 10.1007/BF01212280 | issue=2}}</ref> | | 在文献中有吸引子的其他定义出现。例如,一些作者要求吸引子具有正测度(防止一个点成为吸引子),另一些作者则弱化了B(A)作为一个邻域的要求。<ref>{{cite journal | author=John Milnor | author-link=John Milnor | title= On the concept of attractor | journal=Communications in Mathematical Physics | year=1985 | volume=99 | pages=177–195| doi= 10.1007/BF01212280 | issue=2}}</ref> |
| + | |
| | | |
| ==吸引子的类型== | | ==吸引子的类型== |
| 吸引子是动力系统的相空间的一部分或子集。直到20世纪60年代,吸引子被认为是相空间的简单几何子集——像点、线、面和简单的三维空间。更复杂的吸引子,不能被归类为简单的几何子集,如'''拓扑野生集 topologically wild sets'''——虽然在当时是已知的,但却被认为是精巧的异常事物。斯蒂芬·斯梅尔 Stephen Smale能够证明他的马蹄映射是稳定的,它的吸引子具有'''康托尔集 Cantor set'''结构。 | | 吸引子是动力系统的相空间的一部分或子集。直到20世纪60年代,吸引子被认为是相空间的简单几何子集——像点、线、面和简单的三维空间。更复杂的吸引子,不能被归类为简单的几何子集,如'''拓扑野生集 topologically wild sets'''——虽然在当时是已知的,但却被认为是精巧的异常事物。斯蒂芬·斯梅尔 Stephen Smale能够证明他的马蹄映射是稳定的,它的吸引子具有'''康托尔集 Cantor set'''结构。 |
| + | |
| | | |
| '''不动点 fixed point'''和'''极限环 limit cycle'''是两类简单的吸引子。吸引子可以呈现出许多几何形状(相空间子集)。但当这些集合(或其中的运动)不能简单地描述为基本几何对象(例如,直线,曲面,球体,环面,流形)的简单组合(例如,交集和并集)时,这个吸引子就被称为“奇异吸引子”。 | | '''不动点 fixed point'''和'''极限环 limit cycle'''是两类简单的吸引子。吸引子可以呈现出许多几何形状(相空间子集)。但当这些集合(或其中的运动)不能简单地描述为基本几何对象(例如,直线,曲面,球体,环面,流形)的简单组合(例如,交集和并集)时,这个吸引子就被称为“奇异吸引子”。 |
| + | |
| + | |
| ===驻点=== | | ===驻点=== |
− | [[文件:临界轨道3d.png |右|拇指|根据[[复二次多项式]]演化的复数的弱吸引不动点。相空间是水平复平面;纵轴测量访问复平面中的点的频率。复平面中峰值频率正下方的点是不动点吸引子。]] | + | [[file:Critical_orbit_3d.png |右|拇指|根据[[复二次多项式]]演化的复数的弱吸引不动点。相空间是水平复平面;纵轴测量访问复平面中的点的频率。复平面中峰值频率正下方的点是不动点吸引子。]] |
| | | |
| 函数或变换的不动点是能够通过函数或变换映射到自身的点。如果我们把动力系统的演化看作是一系列的转变,那么在每一转变中,都可能会有一个点是固定的——当然也可能没有。动力系统的最终状态与该系统演化函数的吸引固定点相对应,例如阻尼摆的中心底部位置,玻璃杯中晃动水的水平线和平坦线,在碗的底部中心滚动的大理石。但是动态系统的不动点不一定是系统的吸引子。例如,如果装有滚动大理石的碗被倒置,大理石在碗的顶部达到平衡状态,碗的中心底部(现在是顶部)就是一个固定的状态但不是一个吸引子。这等价于稳定平衡点和不稳定平衡点之差。如果一个大理石在一个倒碗(山)的顶部,这个在碗(山)的顶部的点是一个固定点(平衡),但不是一个吸引子(稳定的平衡)。 | | 函数或变换的不动点是能够通过函数或变换映射到自身的点。如果我们把动力系统的演化看作是一系列的转变,那么在每一转变中,都可能会有一个点是固定的——当然也可能没有。动力系统的最终状态与该系统演化函数的吸引固定点相对应,例如阻尼摆的中心底部位置,玻璃杯中晃动水的水平线和平坦线,在碗的底部中心滚动的大理石。但是动态系统的不动点不一定是系统的吸引子。例如,如果装有滚动大理石的碗被倒置,大理石在碗的顶部达到平衡状态,碗的中心底部(现在是顶部)就是一个固定的状态但不是一个吸引子。这等价于稳定平衡点和不稳定平衡点之差。如果一个大理石在一个倒碗(山)的顶部,这个在碗(山)的顶部的点是一个固定点(平衡),但不是一个吸引子(稳定的平衡)。 |
| + | |
| | | |
| 此外,由于物理世界动力学的现实性——包括非线性动力学的粘滞,摩擦,表面粗糙度,变形(弹性和塑性),甚至'''量子力学 quantum mechanics'''——至少拥有一个固定点的物理动力系统总是有多个固定点和吸引子。<ref name="Contact of Nominally Flat Surfaces">{{cite journal|last=Greenwood|first=J. A.|author2=J. B. P. Williamson|title=Contact of Nominally Flat Surfaces|journal=Proceedings of the Royal Society|date=6 December 1966|volume=295|issue=1442|pages=300–319|doi=10.1098/rspa.1966.0242}}</ref>回到倒置碗顶上的大理石这一例子,即使碗看起来是完美的半球形,大理石是规范的球形,在显微镜下观察时它们的表面实际上都十分复杂,它们的形状在接触过程中改变。任何物理表面都可以被视作一个由多个山峰、山谷、鞍点、山脊、峡谷和平原组成的崎岖地形。<ref name="NISTIR 89-4088">{{cite book|last=Vorberger|first=T. V.|title=Surface Finish Metrology Tutorial|year=1990|publisher=U.S. Department of Commerce, National Institute of Standards (NIST)|page=5|url=https://www.nist.gov/calibrations/upload/89-4088.pdf}}</ref>在这个表面地形中有许多点(以及在这个微观地形上滚动的同样粗糙的大理石的动力系统)被认为是静止的或不动的,其中一些被归类为吸引子。 | | 此外,由于物理世界动力学的现实性——包括非线性动力学的粘滞,摩擦,表面粗糙度,变形(弹性和塑性),甚至'''量子力学 quantum mechanics'''——至少拥有一个固定点的物理动力系统总是有多个固定点和吸引子。<ref name="Contact of Nominally Flat Surfaces">{{cite journal|last=Greenwood|first=J. A.|author2=J. B. P. Williamson|title=Contact of Nominally Flat Surfaces|journal=Proceedings of the Royal Society|date=6 December 1966|volume=295|issue=1442|pages=300–319|doi=10.1098/rspa.1966.0242}}</ref>回到倒置碗顶上的大理石这一例子,即使碗看起来是完美的半球形,大理石是规范的球形,在显微镜下观察时它们的表面实际上都十分复杂,它们的形状在接触过程中改变。任何物理表面都可以被视作一个由多个山峰、山谷、鞍点、山脊、峡谷和平原组成的崎岖地形。<ref name="NISTIR 89-4088">{{cite book|last=Vorberger|first=T. V.|title=Surface Finish Metrology Tutorial|year=1990|publisher=U.S. Department of Commerce, National Institute of Standards (NIST)|page=5|url=https://www.nist.gov/calibrations/upload/89-4088.pdf}}</ref>在这个表面地形中有许多点(以及在这个微观地形上滚动的同样粗糙的大理石的动力系统)被认为是静止的或不动的,其中一些被归类为吸引子。 |
| + | |
| | | |
| ===有限点数=== | | ===有限点数=== |
| 在一个离散时间系统中,吸引子可以以有限数量点的形式出现——这些数量点可以被依次访问。其中每个点都被称为'''周期点'''。'''逻辑图'''说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的吸引子。 | | 在一个离散时间系统中,吸引子可以以有限数量点的形式出现——这些数量点可以被依次访问。其中每个点都被称为'''周期点'''。'''逻辑图'''说明了这一点,根据其特定参数值,对于任何“n”值,可以有由2<sup>''n''</sup>点、3×2<sup>''n''</sup>点等组成的吸引子。 |
| + | |
| | | |
| ===极限环=== | | ===极限环=== |
| 极限环是连续动力系统的周期轨道,它是孤立点。例如时钟的摆动,以及休息时的心跳。(理想摆的极限环不是极限环吸引子的一个例子,因为它的轨道不是孤立的:在理想摆的相空间中,在一个周期轨道的任何一个点附近都有另一个点属于不同的周期轨道,因此前一个轨道不具有吸引力)。 | | 极限环是连续动力系统的周期轨道,它是孤立点。例如时钟的摆动,以及休息时的心跳。(理想摆的极限环不是极限环吸引子的一个例子,因为它的轨道不是孤立的:在理想摆的相空间中,在一个周期轨道的任何一个点附近都有另一个点属于不同的周期轨道,因此前一个轨道不具有吸引力)。 |
| | | |
− | [[文件:VanDerPolPhaseSpace.png|center| 250px |拇指|]]<center> [[文件:VanDerPolPhaseSpace.png|Van der Pol相位肖像:吸引极限环]]</center> | + | <center>[[file:VanDerPolPhaseSpace.png|center| 250px |thumb|Van der Pol相图: 一个吸引极限环]]</center> |
− | | |
− | | |
− | Van der Pol phase portrait: an attracting limit cycle]]
| |
| | | |
− | 范德波尔相图: 一个吸引极限环 ]]
| |
| | | |
| ===极限环=== | | ===极限环=== |
| 在处于极限循环状态的系统的周期轨迹中可能存在多个频率。例如,在物理学中,一个频率可以决定一颗行星围绕恒星运行的速率,而第二个频率则描述了两个天体之间的距离振荡。如果其中两个频率形成'''无理分数 irrational fraction'''(即它们是非公度),则轨迹不再闭合,极限循环变成极限环。如果存在{{math|N<sub>t</sub>}}非公度频率,这种吸引子被称为{{math|''N''<sub>''t''</sub>}}环面。例如这个2环面体: | | 在处于极限循环状态的系统的周期轨迹中可能存在多个频率。例如,在物理学中,一个频率可以决定一颗行星围绕恒星运行的速率,而第二个频率则描述了两个天体之间的距离振荡。如果其中两个频率形成'''无理分数 irrational fraction'''(即它们是非公度),则轨迹不再闭合,极限循环变成极限环。如果存在{{math|N<sub>t</sub>}}非公度频率,这种吸引子被称为{{math|''N''<sub>''t''</sub>}}环面。例如这个2环面体: |
| | | |
− | [[File:torus.png|300px|链接=Special:FilePath/Torus.png]] | + | [[File:torus.png|300px]] |
| | | |
| 与这个吸引子对应的时间序列是一个准周期序列: 具有非公度频率的周期函数(不一定是正弦波)的离散采样和。这样的时间序列不具有严格的周期性,但其功率谱仍然只包含锐线。 | | 与这个吸引子对应的时间序列是一个准周期序列: 具有非公度频率的周期函数(不一定是正弦波)的离散采样和。这样的时间序列不具有严格的周期性,但其功率谱仍然只包含锐线。 |
| + | |
| | | |
| ===奇异吸引子=== | | ===奇异吸引子=== |
| | | |
− | [[file:洛伦兹吸引子yb.svg公司|thumb|200px|right|洛伦兹奇异吸引子的图, ''ρ'' = 28, ''σ'' = 10, ''β'' = 8/3|链接=Special:FilePath/洛伦兹吸引子yb.svg公司]] | + | [[file:Lorenz_attractor_yb.svg.png|thumb|200px|right|洛伦兹奇异吸引子的图, ''ρ'' = 28, ''σ'' = 10, ''β'' = 8/3]] |
| | | |
| 如果吸引子具有分形结构,则称为“奇异”。这种情况通常发生在在当它的动力学系统符合混沌理论时,但是奇异的非混沌吸引子也存在。如果一个奇异吸引子是混沌的,表现出对初始条件的敏感依赖性,那么在吸引子上两个任意接近的备选初始点经过多次迭代后,都会指向任意相距很远的点(受吸引子的限制),而在经历其他次数的迭代之后,会指向任意接近的点。因此,具有混沌吸引子的动态系统是局部不稳定但全局稳定的:一旦一些序列进入吸引子,附近的点就会发散,但不会离开。<ref>{{cite journal | author = Grebogi Celso, Ott Edward, Yorke James A | year = 1987 | title = Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics | url = | journal = Science | volume = 238 | issue = 4827| pages = 632–638 | doi = 10.1126/science.238.4827.632 | pmid = 17816542 | bibcode = 1987Sci...238..632G }}</ref> | | 如果吸引子具有分形结构,则称为“奇异”。这种情况通常发生在在当它的动力学系统符合混沌理论时,但是奇异的非混沌吸引子也存在。如果一个奇异吸引子是混沌的,表现出对初始条件的敏感依赖性,那么在吸引子上两个任意接近的备选初始点经过多次迭代后,都会指向任意相距很远的点(受吸引子的限制),而在经历其他次数的迭代之后,会指向任意接近的点。因此,具有混沌吸引子的动态系统是局部不稳定但全局稳定的:一旦一些序列进入吸引子,附近的点就会发散,但不会离开。<ref>{{cite journal | author = Grebogi Celso, Ott Edward, Yorke James A | year = 1987 | title = Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics | url = | journal = Science | volume = 238 | issue = 4827| pages = 632–638 | doi = 10.1126/science.238.4827.632 | pmid = 17816542 | bibcode = 1987Sci...238..632G }}</ref> |
第83行: |
第98行: |
| | | |
| 奇异吸引子的例子包括'''双涡卷吸引子 double-scroll attractor'''、'''埃农吸引子 Hénon attractor'''、'''若斯叻吸引子 Rössler attractor'''和'''洛伦兹吸引子 Lorenz attractor'''。 | | 奇异吸引子的例子包括'''双涡卷吸引子 double-scroll attractor'''、'''埃农吸引子 Hénon attractor'''、'''若斯叻吸引子 Rössler attractor'''和'''洛伦兹吸引子 Lorenz attractor'''。 |
| + | |
| | | |
| ==吸引子表征系统的演化== | | ==吸引子表征系统的演化== |
第97行: |
第113行: |
| | | |
| <br> | | <br> |
− |
| |
| ==吸引池== | | ==吸引池== |
| 同样地,动态向量X中的线性矩阵差分方程,如果a的最大特征值绝对值大于1,则动态向量X中的所有元素<math>X_t=AX_{t-1}</math> 都将发散到无穷大;不存在吸引子和吸引池。但如果最大特征值小于1,则所有初始向量将渐近收敛于零向量,即零为吸引子;潜在初始向量的整个n维空间就是'''吸引池 basin of attraction'''。 | | 同样地,动态向量X中的线性矩阵差分方程,如果a的最大特征值绝对值大于1,则动态向量X中的所有元素<math>X_t=AX_{t-1}</math> 都将发散到无穷大;不存在吸引子和吸引池。但如果最大特征值小于1,则所有初始向量将渐近收敛于零向量,即零为吸引子;潜在初始向量的整个n维空间就是'''吸引池 basin of attraction'''。 |
| + | |
| | | |
| 吸引子的吸引域是相空间的区域,迭代在这个区域上得到定义,使得该区域中的任何点(任何初始条件)都将渐近地迭代到吸引子中。对于一个稳定的线性系统,相空间中的每一点都在吸引域中。然而,在非线性系统中,有些点可能直接或渐近地映射到无穷大,而另一些点可能位于不同的吸引域中并渐近映射到不同的吸引子;其他初始条件则可能位于或直接映射到非吸引点或循环中。<ref>{{cite journal|last1=Strelioff|first1=C.|last2=Hübler|first2=A.|title=Medium-Term Prediction of Chaos|journal=Phys. Rev. Lett.|date=2006|volume=96|issue=4|doi=10.1103/PhysRevLett.96.044101|pmid=16486826|page=044101}}</ref> | | 吸引子的吸引域是相空间的区域,迭代在这个区域上得到定义,使得该区域中的任何点(任何初始条件)都将渐近地迭代到吸引子中。对于一个稳定的线性系统,相空间中的每一点都在吸引域中。然而,在非线性系统中,有些点可能直接或渐近地映射到无穷大,而另一些点可能位于不同的吸引域中并渐近映射到不同的吸引子;其他初始条件则可能位于或直接映射到非吸引点或循环中。<ref>{{cite journal|last1=Strelioff|first1=C.|last2=Hübler|first2=A.|title=Medium-Term Prediction of Chaos|journal=Phys. Rev. Lett.|date=2006|volume=96|issue=4|doi=10.1103/PhysRevLett.96.044101|pmid=16486826|page=044101}}</ref> |
| | | |
− | Similar features apply to linear differential equations. The scalar equation <math> dx/dt =ax</math> causes all initial values of x except zero to diverge to infinity if a > 0 but to converge to an attractor at the value 0 if a < 0, making the entire number line the basin of attraction for 0. And the matrix system <math>dX/dt=AX</math> gives divergence from all initial points except the vector of zeroes if any eigenvalue of the matrix A is positive; but if all the eigenvalues are negative the vector of zeroes is an attractor whose basin of attraction is the entire phase space.
| |
| | | |
| 类似的特征也适用于线性微分方程。标量方程<math> dx/dt =ax</math> 使得除0以外的所有 x 的初始值在 a > 0时发散到无穷大,但在 a < 0时收敛到吸引子,使整条数轴成为0的吸引域。如果矩阵A的其中一个特征值是正的,则该矩阵系统<math>dX/dt=AX</math>从除零向量以外的所有初始点发散; 但如果所有特征值都是负的,则零向量就是吸引域,它是整个相空间的吸引子。 | | 类似的特征也适用于线性微分方程。标量方程<math> dx/dt =ax</math> 使得除0以外的所有 x 的初始值在 a > 0时发散到无穷大,但在 a < 0时收敛到吸引子,使整条数轴成为0的吸引域。如果矩阵A的其中一个特征值是正的,则该矩阵系统<math>dX/dt=AX</math>从除零向量以外的所有初始点发散; 但如果所有特征值都是负的,则零向量就是吸引域,它是整个相空间的吸引子。 |
− |
| |
− | ===Linear equation or system线性方程或系统===
| |
| | | |
| | | |
| + | ===线性方程或系统=== |
| | | |
− | A single-variable (univariate) linear [[difference equation]] of the [[homogeneous equation|homogeneous form]] <math>x_t=ax_{t-1}</math> diverges to infinity if |''a''| > 1 from all initial points except 0; there is no attractor and therefore no basin of attraction. But if |''a''| < 1 all points on the number line map asymptotically (or directly in the case of 0) to 0; 0 is the attractor, and the entire number line is the basin of attraction.
| + | 如果除了0以外的所有初始点|“A”>>1,单变量线性齐次方程<math>x_t=ax_{t-1}</math>(差分方程)发散到无穷大;没有吸引子,因此没有吸引域。但如果 |''a''| < 1,则数轴上的所有点渐进(或在0的情况下直接映射)到0;0是吸引子,整个数轴都是吸引域。 |
| | | |
− | 如果除了0以外的所有初始点|“A”>>1,单变量线性齐次方程<math>x|t=ax{t-1}</math>(差分方程)发散到无穷大;没有吸引子,因此没有吸引域。但如果 |''a''| < 1,则数轴上的所有点渐进(或在0的情况下直接映射)到0;0是吸引子,整个数轴都是吸引域。
| |
− |
| |
− | Equations or systems that are nonlinear can give rise to a richer variety of behavior than can linear systems. One example is Newton's method of iterating to a root of a nonlinear expression. If the expression has more than one real root, some starting points for the iterative algorithm will lead to one of the roots asymptotically, and other starting points will lead to another. The basins of attraction for the expression's roots are generally not simple—it is not simply that the points nearest one root all map there, giving a basin of attraction consisting of nearby points. The basins of attraction can be infinite in number and arbitrarily small. For example, for the function <math>f(x)=x^3-2x^2-11x+12</math>, the following initial conditions are in successive basins of attraction:
| |
| | | |
| 与线性系统相比,非线性方程或系统有更多样的行为。一个例子是非线性表达式根的牛顿迭代法。如果表达式有多个实根,则迭代算法的某些起始点会渐近地靠近其中一个根,而其他起始点会得出另一个根。表达式根的吸引域通常并不简单,最接近某一个根的点都被映射到那里,从而形成由附近点组成的吸引区。吸引域在数量上可以是无限的,大小上可以任意小。例如,对于函数<math>f(x)=x^3-2x^2-11x+12</math>,在连续的吸引域中以下初始条件: | | 与线性系统相比,非线性方程或系统有更多样的行为。一个例子是非线性表达式根的牛顿迭代法。如果表达式有多个实根,则迭代算法的某些起始点会渐近地靠近其中一个根,而其他起始点会得出另一个根。表达式根的吸引域通常并不简单,最接近某一个根的点都被映射到那里,从而形成由附近点组成的吸引区。吸引域在数量上可以是无限的,大小上可以任意小。例如,对于函数<math>f(x)=x^3-2x^2-11x+12</math>,在连续的吸引域中以下初始条件: |
| | | |
− | Likewise, a linear [[matrix difference equation]] in a dynamic [[coordinate vector|vector]] ''X'', of the homogeneous form <math>X_t=AX_{t-1}</math> in terms of [[square matrix]] ''A'' will have all elements of the dynamic vector diverge to infinity if the largest [[eigenvalue]] of ''A'' is greater than 1 in absolute value; there is no attractor and no basin of attraction. But if the largest eigenvalue is less than 1 in magnitude, all initial vectors will asymptotically converge to the zero vector, which is the attractor; the entire ''n''-dimensional space of potential initial vectors is the basin of attraction.
| |
| | | |
− | 同样的,针对在动态向量''X''中的线性[[矩阵差分方程]](在[[平方矩阵]]''a'中表现为齐次形式<math>X|t=AX{t-1}</math>),如果“a”的最大特征值在绝对值上大于1,则动态向量的所有元素将发散到无穷大;没有吸引子,也没有吸引池。但如果最大特征值小于1,则所有初始向量将渐近收敛于零向量,即零为吸引子;潜在初始向量的整个n维空间就是吸引池。 | + | 同样的,针对在动态向量''X''中的线性[[矩阵差分方程]](在[[平方矩阵]]''a'中表现为齐次形式<math>X_t=AX_{t-1}</math>),如果''A''的最大特征值在绝对值上大于1,则动态向量的所有元素将发散到无穷大;没有吸引子,也没有吸引池。但如果最大特征值小于1,则所有初始向量将渐近收敛于零向量,即零为吸引子;潜在初始向量的整个''n''维空间就是吸引池。 |
| | | |
− | Basins of attraction in the complex plane for using Newton's method to solve x<sup>5</sup> − 1 = 0. Points in like-colored regions map to the same root; darker means more iterations are needed to converge.
| |
| | | |
| 用牛顿法求解 x<sup>5</sup> − 1 = 0。相似颜色区域中的点映射到同一个根; 颜色较深意味着需要更多的迭代来收敛。 | | 用牛顿法求解 x<sup>5</sup> − 1 = 0。相似颜色区域中的点映射到同一个根; 颜色较深意味着需要更多的迭代来收敛。 |
| | | |
− | Similar features apply to linear [[differential equation]]s. The scalar equation <math> dx/dt =ax</math> causes all initial values of ''x'' except zero to diverge to infinity if ''a'' > 0 but to converge to an attractor at the value 0 if ''a'' < 0, making the entire number line the basin of attraction for 0. And the matrix system <math>dX/dt=AX</math> gives divergence from all initial points except the vector of zeroes if any eigenvalue of the matrix ''A'' is positive; but if all the eigenvalues are negative the vector of zeroes is an attractor whose basin of attraction is the entire phase space.
| |
− |
| |
− | 类似的特征也适用于线性微分方程。标量方程<math>dx/dt=ax</math>会导致“x”的所有初始值(除了0)发散到无穷大,如果“a”<0,则收敛到值为0的吸引子,使整条数线成为0的吸引域。如果矩阵“A”的任何特征值都为正,则矩阵系统的dX/dt=AX会从除零向量外所有的初始点发散;但如果所有特征值都为负,则零点向量是一个吸引子,其吸引域是整个相空间。
| |
− |
| |
− | 2.35287527 converges to 4;
| |
− |
| |
− | 2.35287527汇聚到4;
| |
− |
| |
− | ===Nonlinear equation or system非线性方程或系统===
| |
− |
| |
− | 2.35284172 converges to −3;
| |
− |
| |
− | 2.35284172 收敛到 −3;
| |
− |
| |
− |
| |
− |
| |
− | 2.35283735 converges to 4;
| |
| | | |
− | 2.35283735收敛到4;
| + | 类似的特征也适用于线性微分方程。标量方程<math>dx/dt=ax</math>会导致''x''的所有初始值(除了0)发散到无穷大,如果“a”<0,则收敛到值为0的吸引子,使整条数线成为0的吸引域。如果矩阵''A''的任何特征值都为正,则矩阵系统的<math>dX/dt=AX</math>会从除零向量外所有的初始点发散;但如果所有特征值都为负,则零点向量是一个吸引子,其吸引域是整个相空间。 |
| | | |
− | Equations or systems that are [[nonlinear system|nonlinear]] can give rise to a richer variety of behavior than can linear systems. One example is [[Newton's method]] of iterating to a root of a nonlinear expression. If the expression has more than one [[real number|real]] root, some starting points for the iterative algorithm will lead to one of the roots asymptotically, and other starting points will lead to another. The basins of attraction for the expression's roots are generally not simple—it is not simply that the points nearest one root all map there, giving a basin of attraction consisting of nearby points. The basins of attraction can be infinite in number and arbitrarily small. For example,<ref>Dence, Thomas, "Cubics, chaos and Newton's method", ''[[Mathematical Gazette]]'' 81, November 1997, 403–408.</ref> for the function <math>f(x)=x^3-2x^2-11x+12</math>, the following initial conditions are in successive basins of attraction:
| |
| | | |
− | 与线性系统相比,非线性方程或系统可以产生更多行为。一个例子是非线性表达式根的牛顿迭代法。如果表达式有多个实根,则迭代算法的某些起始点会渐近地靠近其中一个根,而其他起始点会得出另一个根。表达式根的吸引池通常并不简单,最接近某一个根的点都被映射到那里,从而形成由附近点组成的吸引区。吸引池在数值上可以是无限的,可以任意小。例如<ref>dance,Thomas,“Cubics,chaos and Newton's method”,“[[mathematic Gazette]]”811997年11月,403–408。</ref>对于函数<math>f(x)=x^3-2x^2-11x+12</math>,以下初始条件在连续的吸引池中 | + | ===非线性方程或系统=== |
− | 2.352836327 converges to −3;
| + | 与线性系统相比,非线性方程或系统可以产生更多行为。一个例子是非线性表达式根的牛顿迭代法。如果表达式有多个实根,则迭代算法的某些起始点会渐近地靠近其中一个根,而其他起始点会得出另一个根。表达式根的吸引池通常并不简单,最接近某一个根的点都被映射到那里,从而形成由附近点组成的吸引区。吸引池在数值上可以是无限的,可以任意小。例如<ref>Dence, Thomas, "Cubics, chaos and Newton's method", ''[[Mathematical Gazette]]'' 81, November 1997, 403–408.</ref>对于函数<math>f(x)=x^3-2x^2-11x+12</math>,以下初始条件在连续的吸引池中 |
| | | |
− | 2.352836327 converges to −3;
| |
| | | |
| + | 2.35287527收敛到4;<br> |
| + | 2.35284172 收敛到 -3;<br> |
| + | 2.35283735收敛到4;<br> |
| + | 2.352836327 收敛到 -3;<br> |
| + | 2.352836323 收敛到 1。 |
| | | |
| | | |
− | 2.352836323 converges to 1.
| + | [[file:Newtroot_1_0_0_0_0_m1.png |thumb|复杂平面中的吸引盆地,用于使用牛顿法求解''x''<sup>5</sup>—1 ;=0。相同颜色区域中的点映射到同一根;较暗表示需要更多迭代才能收敛。]] |
| | | |
− | 2.352836323汇聚为1。
| |
− |
| |
− | [[File:newtroot 1 0 0 0 0 m1.png|thumb|Basins of attraction in the complex plane for using Newton's method to solve ''x''<sup>5</sup> − 1 = 0. Points in like-colored regions map to the same root; darker means more iterations are needed to converge.|链接=Special:FilePath/Newtroot_1_0_0_0_0_m1.png]]
| |
− |
| |
− | [[文件:newtroot 10 0 0 0 m1.png |拇指|复杂平面中的吸引盆地,用于使用牛顿法求解“x”<sup>5</sup>—1 ;=0。相同颜色区域中的点映射到同一根;较暗表示需要更多迭代才能收敛。]]
| |
− |
| |
− | Newton's method can also be applied to complex functions to find their roots. Each root has a basin of attraction in the complex plane; these basins can be mapped as in the image shown. As can be seen, the combined basin of attraction for a particular root can have many disconnected regions. For many complex functions, the boundaries of the basins of attraction are fractals.
| |
| | | |
| 牛顿法也可以应用于求复变函数的根。在复杂的平面上,每个根部都有一个吸引池; 这些区域可以如图所示绘制出来。可以看出,为一个特定的根而组合成的吸引池可以有许多不相连的地区。对于许多复杂函数来说,吸引池的边界为分形。 | | 牛顿法也可以应用于求复变函数的根。在复杂的平面上,每个根部都有一个吸引池; 这些区域可以如图所示绘制出来。可以看出,为一个特定的根而组合成的吸引池可以有许多不相连的地区。对于许多复杂函数来说,吸引池的边界为分形。 |
| | | |
− | :2.35287527 converges to 4;
| |
− |
| |
− | :2.35284172 converges to −3;
| |
− |
| |
− | :2.35283735 converges to 4;
| |
− |
| |
− | Parabolic partial differential equations may have finite-dimensional attractors. The diffusive part of the equation damps higher frequencies and in some cases leads to a global attractor. The Ginzburg–Landau, the Kuramoto–Sivashinsky, and the two-dimensional, forced Navier–Stokes equations are all known to have global attractors of finite dimension.
| |
− |
| |
− | 抛物型偏微分方程可能具有有限维吸引子。在某些情况下,方程的扩散部分会阻抑更高的频率,触发一个全局吸引子。<font color="#ff8000">金兹堡-朗道方程 Ginzburg-Landau equations </font>、 <font color="#ff8000">K-S方程 Kuramoto-Sivashinsky equations </font>和二维<font color="#ff8000">强迫纳维-斯托克斯方程forced Navier–Stokes equation</font>都具有有限维的全局吸引子。
| |
− |
| |
− | :2.352836327 converges to −3;
| |
− |
| |
− | :2.352836323 converges to 1.
| |
− |
| |
− | For the three-dimensional, incompressible Navier–Stokes equation with periodic boundary conditions, if it has a global attractor, then this attractor will be of finite dimensions.
| |
| | | |
| 对于具有周期边界条件的三维不可压缩方程 Navier-Stokes equation,如果它有一个全局吸引子那么这个吸引子将是有限维的。 | | 对于具有周期边界条件的三维不可压缩方程 Navier-Stokes equation,如果它有一个全局吸引子那么这个吸引子将是有限维的。 |
| | | |
| | | |
− | | + | 牛顿方法也可以应用于复杂分析以找到它们的根。每个根在[[复合平面]]中都有一个吸引盆;如图所示,可以绘制这些盆地的地图。可以看出,特定根的组合吸引盆地可以有许多断开的区域。对于许多复杂函数,吸引盆地的边界为[[分形]]。 |
− | Newton's method can also be applied to [[complex analysis|complex functions]] to find their roots. Each root has a basin of attraction in the [[complex plane]]; these basins can be mapped as in the image shown. As can be seen, the combined basin of attraction for a particular root can have many disconnected regions. For many complex functions, the boundaries of the basins of attraction are [[fractal]]s.
| |
− | | |
− | <!-- This should be uncommented once the <nowiki></nowiki> in hidden attractor is solved. See the talk page for more information.
| |
− | | |
− | < ! -- 一旦隐藏吸引子中的 < nowiki >{Notability}} </nowiki > 得到解决,就应该取消评论。更多信息请参见演讲页面。
| |
− | | |
| | | |
| | | |
− | == Partial differential equations偏微分方程 == | + | == 偏微分方程 == |
| | | |
| [[File:Chua-chaotic-hidden-attractor.jpg|thumb| | | [[File:Chua-chaotic-hidden-attractor.jpg|thumb| |
| | | |
− | [文件: Chua-chaotic-hidden-attractor. jpg | thumb |
| |
| | | |
− | [[Parabolic partial differential equation]]s may have finite-dimensional attractors. The diffusive part of the equation damps higher frequencies and in some cases leads to a global attractor. The ''Ginzburg–Landau'', the ''Kuramoto–Sivashinsky'', and the two-dimensional, forced [[Navier–Stokes equation]]s are all known to have global attractors of finite dimension. | + | 抛物型偏微分方程可能具有有限维吸引子。在某些情况下,方程的扩散部分会阻抑更高的频率,触发一个全局吸引子。金兹堡-朗道方程 Ginzburg-Landau equations 、 [[K-S方程]] Kuramoto-Sivashinsky equations和二维强迫纳维-斯托克斯方程 forced Navier–Stokes equation都具有有限维的全局吸引子。 |
| | | |
− | 抛物型偏微分方程可能具有有限维吸引子。在某些情况下,方程的扩散部分会阻抑更高的频率,触发一个全局吸引子。<font color="#ff8000">金兹堡-朗道方程 Ginzburg-Landau equations </font>、 <font color="#ff8000">K-S方程 Kuramoto-Sivashinsky equations </font>和二维<font color="#ff8000">强迫纳维-斯托克斯方程forced Navier–Stokes equation</font>都具有有限维的全局吸引子。
| |
− | Chaotic hidden attractor (green domain) in Chua's system.
| |
| | | |
− | 蔡氏系统中的混沌隐藏吸引子(绿域)。
| |
| | | |
| + | == 另见== |
| + | *[[循环检测]] |
| + | *[双曲线集][] |
| + | *[[稳定流形]] |
| + | *[[稳态]] |
| | | |
| | | |
− | Trajectories with initial data in a neighborhood of two saddle points (blue) tend (red arrow) to infinity or tend (black arrow) to stable zero equilibrium point (orange).
| + | ==参考文献== |
| + | <references /> |
| | | |
− | 带有初始数据的一个邻近鞍点(蓝色)的轨迹趋向(红色箭头)无穷大或趋向(黑色箭头)稳定的零平衡点(橙色)。
| |
| | | |
− | For the three-dimensional, incompressible Navier–Stokes equation with periodic [[boundary condition]]s, if it has a global attractor, then this attractor will be of finite dimensions.<ref>[[Geneviève Raugel]], Global Attractors in Partial Differential Equations, ''Handbook of Dynamical Systems'', Elsevier, 2002, pp. 885–982.</ref>
| + | == 编者推荐 == |
− | 对于具有周期边界条件的三维不可压缩方程 Navier-Stokes equation方程,如果它有一个全局吸引子那么这个吸引子将是有限维的。<ref>[[Geneviève Raugel]], Global Attractors in Partial Differential Equations, ''Handbook of Dynamical Systems'', Elsevier, 2002, pp. 885–982.</ref>
| + | 研究速递:布尔网络中吸引子的快速识别<nowiki/>https://swarma.org/?p=28119 |
| | | |
− | ]]
| + | 集智学园 |
| | | |
− | ]]
| + | Strange Attractors https://campus.swarma.org/course/1652 |
| | | |
| + | Strange attractor for the Lorenz equations<nowiki/>https://campus.swarma.org/course/689 |
| | | |
| + | Summary and Conclusions<nowiki/>https://campus.swarma.org/course/1654 |
| | | |
− | <!-- This should be uncommented once the <nowiki>{{Notability}}</nowiki> in [[hidden attractor]] is solved. See the talk page for more information.
| + | ==编者推荐== |
− | <!--一旦隐藏吸引子中的<nowiki>{Notability}}</nowiki得到解决>,就应该取消注释。更多信息请参见谈话页。
| + | ===集智课程=== |
− | | + | ====[https://campus.swarma.org/course/1655 圣塔菲课程:Introduction to Dynamical Systems and Chaos]==== |
− | From a computational point of view, attractors can be naturally regarded as self-excited attractors or
| + | 本课程主要介绍动力学系统和混沌系统,您将学到蝴蝶效应(butterfly effect)、奇异吸引子(attractors)等基本概念,以及如何应用于您感兴趣的领域。课程主题涉及相空间(phase space),分叉(bifurcations),混沌(chaos),蝴蝶效应(butterfly effect),奇怪吸引子(strange attractors)和模式生成(pattern formation)。 |
− | | |
− | 从计算的角度来看,吸引子可以自然地被看作<font color="#ff8000">自激吸引子self-excited attractors</font>或
| |
− | | |
− | == Numerical localization (visualization) of attractors: self-excited and hidden attractors 吸引子的数值局部化(可视化):自激吸引子和<font color="#ff8000">隐藏吸引子hidden attractors</font> == | |
− | | |
− | hidden attractors. Self-excited attractors can be localized numerically by standard computational procedures, in which after a transient sequence, a trajectory starting from a point on an unstable manifold in a small neighborhood of an unstable equilibrium reaches an attractor, such as the classical attractors in the Van der Pol, Belousov–Zhabotinsky, Lorenz, and many other dynamical systems. In contrast, the basin of attraction of a hidden attractor does not contain neighborhoods of equilibria, so the hidden attractor cannot be localized by standard computational procedures.
| |
− | | |
− | 自激吸引子可以用标准的计算程序进行数值定域,在一个瞬态序列之后,从不稳定平衡小邻域中不稳定流形上的点出发的轨迹将到达一个吸引子,例如<font color="#ff8000">范德波尔振荡器中的经典吸引子Van der Pol oscillator</font>,<font color="#ff8000">别洛乌索夫·扎伯廷斯基反应 Belousov–Zhabotinsky reaction</font>,<font color="#ff8000">洛伦兹吸引子 Lorenz attractor</font>以及其他许多动力系统。相比之下,隐藏吸引子的吸引池不包含平衡邻域,因此隐藏吸引子不能用标准的计算程序进行局部化。
| |
− | | |
− | [[File:Chua-chaotic-hidden-attractor.jpg|thumb|
| |
− | | |
− | -->
| |
− | | |
− | -->
| |
− | | |
− | Chaotic [[hidden attractor]] (green domain) in [[Chua's circuit|Chua's system]].
| |
− | [[蔡氏电路|蔡氏系统]]中的混沌隐藏吸引子(绿域)。
| |
− | | |
− | Trajectories with initial data in a neighborhood of two saddle points (blue) tend (red arrow) to infinity or tend (black arrow) to stable zero equilibrium point (orange).
| |
− | | |
− | 带有初始数据的一个邻近<font color="#ff8000">鞍点saddle points </font> (蓝色)的轨迹趋向(红色箭头)无穷大或趋向(黑色箭头)稳定的零平衡点(橙色)。
| |
− | | |
− | ]]
| |
− | | |
− | | |
− | | |
− | From a computational point of view, attractors can be naturally regarded as ''self-excited attractors'' or
| |
− | | |
− | ''[[hidden attractor]]s''.
| |
− | | |
− | 从计算的角度来看,吸引子可以分为“自激吸引子”或''隐藏吸引子''<ref name="2011-PLA-Hidden-Chua-attractor">{{cite journal |author1=Leonov G.A. |author2=Vagaitsev V.I. |author3=Kuznetsov N.V. |
| |
− | | |
− | year = 2011 |
| |
− | | |
− | title = Localization of hidden Chua's attractors |
| |
− | | |
− | journal = Physics Letters A |
| |
− | | |
− | volume = 375 |
| |
− | | |
− | issue = 23 |
| |
− | | |
− | pages = 2230–2233 |
| |
− | | |
− | url = http://www.math.spbu.ru/user/nk/PDF/2011-PhysLetA-Hidden-Attractor-Chua.pdf |
| |
− | | |
− | doi = 10.1016/j.physleta.2011.04.037}}
| |
− | | |
− | </ref><ref>{{cite journal
| |
− | | |
− | |author1=Bragin V.O. |author2=Vagaitsev V.I. |author3=Kuznetsov N.V. |author4=Leonov G.A. | year = 2011
| |
− | | |
− | | title = Algorithms for Finding Hidden Oscillations in Nonlinear Systems. The Aizerman and Kalman Conjectures and Chua's Circuits
| |
− | | |
− | | journal = Journal of Computer and Systems Sciences International
| |
− | | |
− | | volume = 50
| |
− | | |
− | | number = 5
| |
− | | |
− | | pages = 511–543
| |
− | | |
− | | last = Ruelle
| |
− | | |
− | | last = Ruelle
| |
− | | |
− | | url = http://www.math.spbu.ru/user/nk/PDF/2011-TiSU-Hidden-oscillations-attractors-Aizerman-Kalman-conjectures.pdf
| |
− | | |
− | | first = David
| |
− | | |
− | 第一名: David
| |
− | | |
− | | doi = 10.1134/S106423071104006X}}
| |
− | | |
− | | authorlink = David Ruelle
| |
− | | |
− | | authorlink = David Ruelle
| |
− | | |
− | </ref><ref name="2012-Physica-D-Hidden-attractor-Chua-circuit-smooth">{{cite journal |author1=Leonov G.A. |author2=Vagaitsev V.I. |author3=Kuznetsov N.V. |
| |
− | | |
− | | title = What is...a Strange Attractor?
| |
− | | |
− | | title = 什么是... 奇异吸引子?
| |
− | | |
− | year = 2012 |
| |
− | | |
− | | journal = Notices of the American Mathematical Society
| |
− | | |
− | | journal = 美国数学学会公告
| |
− | | |
− | title = Hidden attractor in smooth Chua systems |
| |
− | | |
− | |date=August 2006
| |
− | | |
− | | date = August 2006
| |
− | | |
− | journal = Physica D |
| |
− | | |
− | | volume = 53
| |
− | | |
− | 53
| |
− | | |
− | volume = 241 |
| |
| | | |
− | | issue = 7
| |
| | | |
− | 第7期
| + | ====[https://campus.swarma.org/course/1379 相空间重构方法 | 复杂系统自动建模读书会第6期]==== |
| + | 该课程内容是围绕论文《Geometry from a Time Series Predicting chaotic time series》进行的分享。关于相空间重构,即利用时间序列数据重构吸引子,通常都是使用Taken定理,来直接构成原始的相空间中的轨迹。 |
| | | |
− | issue = 18 |
| |
| | | |
− | | pages = 764–765
| + | ===其他=== |
| + | * [https://swarma.org/?p=28119 研究速递:布尔网络中吸引子的快速识别] |
| | | |
− | | 页 = 764-765
| |
| | | |
− | pages = 1482–1486 |
| |
| | | |
− | | url = http://www.ams.org/notices/200607/what-is-ruelle.pdf
| |
| | | |
− | Http://www.ams.org/notices/200607/what-is-ruelle.pdf
| + | ---- |
| + | 本中文词条由水流心不竞初译,由和光同尘审校,Lunji、[[用户:薄荷|薄荷]]编辑,如有问题,欢迎在讨论页面留言。 |
| | | |
− | url = http://www.math.spbu.ru/user/nk/PDF/2012-Physica-D-Hidden-attractor-Chua-circuit-smooth.pdf |
| |
| | | |
− | | accessdate = 16 January 2008 }}
| |
| | | |
− | 16 January 2008}}
| + | '''本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。''' |
| | | |
− | doi = 10.1016/j.physd.2012.05.016}}
| |
| | | |
− | </ref><ref name="2013-IJBC-Hidden-attractors">{{cite journal |author1=Leonov G.A. |author2=Kuznetsov N.V. |
| + | [[Category:极限集]] |
− | | |
− | year = 2013 |
| |
− | | |
− | title = Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits |
| |
− | | |
− | journal = International Journal of Bifurcation and Chaos |
| |
− | | |
− | volume = 23 |
| |
− | | |
− | issue = 1 |
| |
− | | |
− | pages = art. no. 1330002|
| |
− | | |
− | doi = 10.1142/S0218127413300024|
| |
− | | |
− | doi-access = free }}
| |
− | | |
− | </ref> Self-excited attractors can be localized numerically by standard computational procedures, in which after a transient sequence, a trajectory starting from a point on an unstable manifold in a small neighborhood of an unstable equilibrium reaches an attractor, such as the classical attractors in the [[Van der Pol oscillator|Van der Pol]], [[Belousov–Zhabotinsky reaction|Belousov–Zhabotinsky]], [[Lorenz attractor|Lorenz]], and many other dynamical systems. In contrast, the basin of attraction of a [[hidden attractor]] does not contain neighborhoods of equilibria, so the [[hidden attractor]] cannot be localized by standard computational procedures.
| |
− | | |
− | 自激吸引子可以用标准的计算程序进行数值定域,在一个瞬态序列之后,从不稳定平衡小邻域中不稳定流形上的点出发的轨迹将到达一个吸引子,例如<font color="#ff8000">范德波尔振荡器中的经典吸引子Van der Pol oscillator</font>,<font color="#ff8000">别洛乌索夫·扎伯廷斯基反应 Belousov–Zhabotinsky reaction</font>,<font color="#ff8000">洛伦兹吸引子 Lorenz attractor</font>,以及其他许多动力系统。相比之下,隐藏吸引子的吸引池不包含平衡邻域,因此隐藏吸引子不能用标准的计算程序进行局部化。
| |
− | -->
| |
− | | |
− | | |
− | | |
− | == See also 请参阅==
| |
− | {{commons|Attractor}}
| |
− | | |
− | * [[Cycle detection]]
| |
− | | |
− | * [[Hyperbolic set]]
| |
− | | |
− | * [[Stable manifold]]
| |
− | | |
− | * [[Steady state]]
| |
− | | |
− | {{常见 |吸引子}}
| |
− | | |
− | *[[循环检测]]
| |
− | | |
− | *[双曲线集][]
| |
− | | |
− | *[[稳定流形]]
| |
− | | |
− | *[[稳态]]
| |
− | | |
− | Category:Limit sets | |
− | | |
− | 类别: 极限集
| |
− | | |
− | <noinclude>
| |
− | | |
− | <small>This page was moved from [[wikipedia:en:Attractor]]. Its edit history can be viewed at [[吸引子/edithistory]]</small></noinclude>
| |
− | | |
− | [[Category:待整理页面]]
| |
− | <references />
| |
− | | |
− | == 编者推荐 ==
| |
− | 研究速递:布尔网络中吸引子的快速识别<nowiki/>https://swarma.org/?p=28119
| |
− | | |
− | 集智学园
| |
− | | |
− | Strange Attractors https://campus.swarma.org/course/1652
| |
− | | |
− | Strange attractor for the Lorenz equations<nowiki/>https://campus.swarma.org/course/689
| |
− | | |
− | Summary and Conclusions<nowiki/>https://campus.swarma.org/course/1654
| |