更改

跳到导航 跳到搜索
添加38字节 、 2022年4月10日 (日) 21:34
无编辑摘要
第299行: 第299行:  
到1941年底,图灵和他的密码分析师同事戈登 · 威尔奇曼、休 · 亚历山大和斯图尔特 · 米尔纳-巴里都感到沮丧。在波兰人工作的基础上,他们建立了一个很好的解密英格玛信号的工作系统,但是他们有限的人员和炸弹意味着他们无法翻译所有的信号。在夏天,他们取得了相当大的成功,信息传输损失已经降到每月不到10万的量值; 然而,他们急需更多的资源来跟上德国的调整。他们试图通过适当的渠道获得更多的人和资金更多的炸弹,但失败了。
 
到1941年底,图灵和他的密码分析师同事戈登 · 威尔奇曼、休 · 亚历山大和斯图尔特 · 米尔纳-巴里都感到沮丧。在波兰人工作的基础上,他们建立了一个很好的解密英格玛信号的工作系统,但是他们有限的人员和炸弹意味着他们无法翻译所有的信号。在夏天,他们取得了相当大的成功,信息传输损失已经降到每月不到10万的量值; 然而,他们急需更多的资源来跟上德国的调整。他们试图通过适当的渠道获得更多的人和资金更多的炸弹,但失败了。
   −
【最终版】1941年末,图灵和他的密码分析师同事戈登·韦尔奇曼、休·亚历山大和斯图尔特·米尔纳-巴里感到很沮丧。在波兰人工作的基础上,他们建立了一个很好的破译Enigma信号的工作系统,但他们有限的人手和解码器意味着他们无法翻译所有的信号。在夏季,他们取得了相当大的成功,信息传输损失已经降到每月不到10万的量值;然而,他们急需更多的资源来跟上德国的调整步伐。他们试图通过适当的渠道招募更多的人,资助更多的炸弹,但失败了。
+
【最终版】1941年末,图灵和他的密码分析师同事戈登·韦尔奇曼、休·亚历山大和斯图尔特·米尔纳-巴里感到很沮丧。在波兰人工作的基础上,他们建立了一个很好的破译Enigma信号的工作系统,但他们有限的人手和解码器意味着他们无法翻译所有的信号。在夏季,他们取得了相当大的成功,信息传输损失已经降到每月不到10万的量值;然而,他们急需更多的资源来跟上德国的调整步伐。他们试图通过适当的渠道招募更多的人,资助了更多的解码器,但失败了。
    
On 28 October they wrote directly to [[Winston Churchill]] explaining their difficulties, with Turing as the first named. They emphasised how small their need was compared with the vast expenditure of men and money by the forces and compared with the level of assistance they could offer to the forces.<ref name=":0" /> As [[Andrew Hodges]], biographer of Turing, later wrote, "This letter had an electric effect."<ref name="Hodges 1983 221">{{Harvnb|Hodges|1983|p=221}}</ref> Churchill wrote a memo to [[Hastings Ismay, 1st Baron Ismay|General Ismay]], which read: "ACTION THIS DAY. Make sure they have all they want on extreme priority and report to me that this has been done." On 18 November, the chief of the secret service reported that every possible measure was being taken.<ref name="Hodges 1983 221" /> The cryptographers at Bletchley Park did not know of the Prime Minister's response, but as Milner-Barry recalled, "All that we did notice was that almost from that day the rough ways began miraculously to be made smooth."<ref>Copeland, ''The Essential Turing'', [http://www.maths.ed.ac.uk/~aar/turingletter.pdf pp. 336–337] {{Webarchive|url=https://web.archive.org/web/20150218142127/http://www.maths.ed.ac.uk/~aar/turingletter.pdf |date=18 February 2015 }}.</ref> More than two hundred bombes were in operation by the end of the war.<ref name="codebreaker">{{cite web | last1 = Copeland | first1 = Jack | last2 = Proudfoot | first2 = Diane | author-link = Jack Copeland | title = Alan Turing, Codebreaker and Computer Pioneer | url = http://www.alanturing.net/turing_archive/pages/Reference%20Articles/codebreaker.html | publisher = alanturing.net | date = May 2004 | access-date = 27 July 2007 | archive-url = https://web.archive.org/web/20070709065520/http://www.alanturing.net/turing_archive/pages/Reference%20Articles/codebreaker.html | archive-date = 9 July 2007 | url-status = live }}</ref>
 
On 28 October they wrote directly to [[Winston Churchill]] explaining their difficulties, with Turing as the first named. They emphasised how small their need was compared with the vast expenditure of men and money by the forces and compared with the level of assistance they could offer to the forces.<ref name=":0" /> As [[Andrew Hodges]], biographer of Turing, later wrote, "This letter had an electric effect."<ref name="Hodges 1983 221">{{Harvnb|Hodges|1983|p=221}}</ref> Churchill wrote a memo to [[Hastings Ismay, 1st Baron Ismay|General Ismay]], which read: "ACTION THIS DAY. Make sure they have all they want on extreme priority and report to me that this has been done." On 18 November, the chief of the secret service reported that every possible measure was being taken.<ref name="Hodges 1983 221" /> The cryptographers at Bletchley Park did not know of the Prime Minister's response, but as Milner-Barry recalled, "All that we did notice was that almost from that day the rough ways began miraculously to be made smooth."<ref>Copeland, ''The Essential Turing'', [http://www.maths.ed.ac.uk/~aar/turingletter.pdf pp. 336–337] {{Webarchive|url=https://web.archive.org/web/20150218142127/http://www.maths.ed.ac.uk/~aar/turingletter.pdf |date=18 February 2015 }}.</ref> More than two hundred bombes were in operation by the end of the war.<ref name="codebreaker">{{cite web | last1 = Copeland | first1 = Jack | last2 = Proudfoot | first2 = Diane | author-link = Jack Copeland | title = Alan Turing, Codebreaker and Computer Pioneer | url = http://www.alanturing.net/turing_archive/pages/Reference%20Articles/codebreaker.html | publisher = alanturing.net | date = May 2004 | access-date = 27 July 2007 | archive-url = https://web.archive.org/web/20070709065520/http://www.alanturing.net/turing_archive/pages/Reference%20Articles/codebreaker.html | archive-date = 9 July 2007 | url-status = live }}</ref>
第358行: 第358行:  
1942年7月,图灵发明了一种称为 Turingery (或开玩笑地称为 Turingismus)的技术,用来对付德国人的新型秘密作家机器产生的洛伦兹密码信息。这是一台电传打字机转子密码附件,代号为 Tunny,位于 Bletchley Park。车轮修理是车轮折断的一种方法,也就是计算出图尼车轮凸轮设置的一种程序。他还把 Tunny 团队介绍给了 Tommy Flowers,后者在 Max Newman 的指导下,建造了世界上第一台可编程数字电子计算机——巨像计算机,它取代了之前更简单的机器(Heath Robinson) ,其出色的速度使得统计解密技术能够有效地应用于信息。有些人错误地认为图灵是巨像计算机设计中的关键人物。图灵厄立特和班布里斯马斯的统计方法无疑为洛伦兹密码的密码分析思想提供了思路,但他并没有直接参与巨像的发展。
 
1942年7月,图灵发明了一种称为 Turingery (或开玩笑地称为 Turingismus)的技术,用来对付德国人的新型秘密作家机器产生的洛伦兹密码信息。这是一台电传打字机转子密码附件,代号为 Tunny,位于 Bletchley Park。车轮修理是车轮折断的一种方法,也就是计算出图尼车轮凸轮设置的一种程序。他还把 Tunny 团队介绍给了 Tommy Flowers,后者在 Max Newman 的指导下,建造了世界上第一台可编程数字电子计算机——巨像计算机,它取代了之前更简单的机器(Heath Robinson) ,其出色的速度使得统计解密技术能够有效地应用于信息。有些人错误地认为图灵是巨像计算机设计中的关键人物。图灵厄立特和班布里斯马斯的统计方法无疑为洛伦兹密码的密码分析思想提供了思路,但他并没有直接参与巨像的发展。
   −
【最终版】1942年7月,图灵发明了一种叫做图灵格里的技术,用来对付由德国的新Geheimschreiber(秘密编写器)机器产生的洛伦兹密码信息。这是布莱切利公园一个代号为金枪鱼的电传打字机转子密码附件。图灵格里是一种车轮断裂的方法,也就是说,一个程序来计算出金枪鱼的车轮的凸轮设置。他还把金枪鱼团队介绍给了汤米·弗劳尔斯,弗劳尔斯在马克斯·纽曼的指导下,继续建造了巨像计算机,这是世界上第一个可编程数字电子计算机,取代了以前更简单的机器(希斯·罗宾逊),它的超高速使得统计解密技术可以有效地应用于这些信息。有些人错误地认为图灵是巨像计算机设计的关键人物。图灵格里和Banburismus的统计学方法无疑为洛伦兹密码的密码分析提供了思路,但他并没有直接参与巨人机的开发。
+
【最终版】1942年7月,图灵发明了一种叫做图灵格里的技术,用来对付由德国的新Geheimschreiber(秘密编写器)机器产生的洛伦兹密码信息。这是布莱切利公园一个代号为金枪鱼的电传打字机转子密码附件。图灵格里是一种车轮断裂的方法,也就是说,一个程序来计算出金枪鱼的车轮的凸轮设置。他还把金枪鱼团队介绍给了汤米·弗劳尔斯,弗劳尔斯在马克斯·纽曼的指导下,继续建造了巨人计算机,这是世界上第一个可编程数字电子计算机,取代了以前更简单的机器(希斯·罗宾逊),它的超高速使得统计解密技术可以有效地应用于这些信息。有些人错误地认为图灵是巨人计算机设计的关键人物。图灵格里和Banburismus的统计学方法无疑为洛伦兹密码的密码分析提供了思路,但他并没有直接参与巨人计算机的开发。
 
===Delilah黛利拉===
 
===Delilah黛利拉===
 
Following his work at [[Bell Labs]] in the US,<ref>{{Harvnb|Hodges|1983|pp=245–250}}</ref> Turing pursued the idea of electronic enciphering of speech in the telephone system. In the latter part of the war, he moved to work for the Secret Service's Radio Security Service (later [[Her Majesty's Government Communications Centre|HMGCC]]) at [[Hanslope Park]]. At the park, he further developed his knowledge of electronics with the assistance of engineer Donald Bayley. Together they undertook the design and construction of a portable [[secure voice]] communications machine codenamed ''[[Delilah (voice encryption)|Delilah]]''.<ref>{{Harvnb|Hodges|1983|p=273}}</ref> The machine was intended for different applications, but it lacked the capability for use with long-distance radio transmissions. In any case, Delilah was completed too late to be used during the war. Though the system worked fully, with Turing demonstrating it to officials by encrypting and decrypting a recording of a [[Winston Churchill]] speech, Delilah was not adopted for use.<ref>{{Harvnb|Hodges|1983|p=346}}</ref> Turing also consulted with Bell Labs on the development of [[SIGSALY]], a secure voice system that was used in the later years of the war.
 
Following his work at [[Bell Labs]] in the US,<ref>{{Harvnb|Hodges|1983|pp=245–250}}</ref> Turing pursued the idea of electronic enciphering of speech in the telephone system. In the latter part of the war, he moved to work for the Secret Service's Radio Security Service (later [[Her Majesty's Government Communications Centre|HMGCC]]) at [[Hanslope Park]]. At the park, he further developed his knowledge of electronics with the assistance of engineer Donald Bayley. Together they undertook the design and construction of a portable [[secure voice]] communications machine codenamed ''[[Delilah (voice encryption)|Delilah]]''.<ref>{{Harvnb|Hodges|1983|p=273}}</ref> The machine was intended for different applications, but it lacked the capability for use with long-distance radio transmissions. In any case, Delilah was completed too late to be used during the war. Though the system worked fully, with Turing demonstrating it to officials by encrypting and decrypting a recording of a [[Winston Churchill]] speech, Delilah was not adopted for use.<ref>{{Harvnb|Hodges|1983|p=346}}</ref> Turing also consulted with Bell Labs on the development of [[SIGSALY]], a secure voice system that was used in the later years of the war.
第382行: 第382行:  
根据杜塞尔多夫的根舍出版社出版的德国计算机先驱亨氏马克斯·普朗克物理学研究所的回忆录,图灵和康拉德 · 祖泽之间有过一次会面。故事发生在1947年的格丁根。这种审问采取了座谈会的形式。参与者分别是来自英国的沃姆斯利、图灵、波特和一些德国研究人员,比如 Zuse、 Walther 和 Billing (更多细节参见 Herbert Bruderer、 Konrad Zuse 和 die Schweiz)。
 
根据杜塞尔多夫的根舍出版社出版的德国计算机先驱亨氏马克斯·普朗克物理学研究所的回忆录,图灵和康拉德 · 祖泽之间有过一次会面。故事发生在1947年的格丁根。这种审问采取了座谈会的形式。参与者分别是来自英国的沃姆斯利、图灵、波特和一些德国研究人员,比如 Zuse、 Walther 和 Billing (更多细节参见 Herbert Bruderer、 Konrad Zuse 和 die Schweiz)。
   −
【最终版】马克斯·普朗克物理研究所的德国计算机先驱海因茨·比林(Heinz Billing)的回忆录由根舍(Genscher)出版,网址是Düsseldorf。根据他的回忆录,图灵和康拉德·祖斯(Konrad Zuse)曾有过一次会面。它发生在1947年Göttingen。审讯是以讨论会的形式进行的。参与者是来自英国的沃默斯利、图灵、波特和一些德国研究人员,如Zuse、Walther和Billing(更多细节见Herbert Bruderer、Konrad Zuse和die Schweiz)。
+
【最终版】根据杜塞尔多夫的根舍出版社出版的德国计算机先驱亨氏马克斯·普朗克物理学研究所的回忆录,图灵和康拉德 · 祖泽之间有过一次会面。根据他的回忆录,图灵和康拉德·祖斯(Konrad Zuse)曾有过一次会面。它发生在1947年Göttingen。审讯是以讨论会的形式进行的。参与者是来自英国的沃默斯利、图灵、波特和一些德国研究人员,如Zuse、Walther和Billing(更多细节见Herbert Bruderer、Konrad Zuse和die Schweiz)。
    
In 1948, Turing was appointed [[Reader (academic rank)|reader]] in the [[School of Mathematics, University of Manchester|Mathematics Department]] at the [[Victoria University of Manchester]]. A year later, he became deputy director of the Computing Machine Laboratory, where he worked on software for one of the earliest [[Von Neumann architecture|stored-program]] computers—the [[Manchester Mark 1]]. Turing wrote the first version of the Programmer's Manual for this machine, and was recruited by Ferranti as a consultant in the development of their commercialised machine, the Ferranti Mark 1. He continued to be paid consultancy fees by Ferranti until his death.<ref>{{Cite book|url=https://www.manturing.net/|title=Alan Turing's Manchester|last=Swinton|first=Jonathan|publisher=Infang Publishing|year=2019|isbn=978-0-9931789-2-4|location=Manchester|access-date=18 March 2019|archive-url=https://web.archive.org/web/20190217172318/https://www.manturing.net/|archive-date=17 February 2019|url-status=live}}</ref> During this time, he continued to do more abstract work in mathematics,<ref name="doi10.1093/qjmam/1.1.287">{{Cite journal|last1 = Turing |first1 = A.M.|doi = 10.1093/qjmam/1.1.287 |title = Rounding-Off Errors in Matrix Processes |journal = The Quarterly Journal of Mechanics and Applied Mathematics |volume = 1| pages = 287–308 |year = 1948|hdl = 10338.dmlcz/103139}}</ref> and in "[[Computing Machinery and Intelligence]]" (''[[Mind (journal)|Mind]]'', October 1950), Turing addressed the problem of [[artificial intelligence]], and proposed an experiment that became known as the [[Turing test]], an attempt to define a standard for a machine to be called "intelligent". The idea was that a computer could be said to "think" if a human interrogator could not tell it apart, through conversation, from a human being.<ref>[[Stevan Harnad|Harnad, Stevan]] (2008) [http://eprints.soton.ac.uk/262954/ The Annotation Game: On Turing (1950) on Computing, Machinery and Intelligence] {{Webarchive|url=https://web.archive.org/web/20171018070225/https://eprints.soton.ac.uk/262954/ |date=18 October 2017 }}. In: Epstein, Robert & Peters, Grace (Eds.) ''Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer''. Springer</ref> Harnad, Stevan (2008) The Annotation Game: On Turing (1950) on Computing, Machinery and Intelligence . In: Epstein, Robert & Peters, Grace (Eds.) Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer In the paper, Turing suggested that rather than building a program to simulate the adult mind, it would be better to produce a simpler one to simulate a child's mind and then to subject it to a course of education. A [[Turing test#Reverse Turing test and CAPTCHA|reversed]] form of the Turing test is widely used on the Internet; the [[CAPTCHA]] test is intended to determine whether the user is a human or a computer.
 
In 1948, Turing was appointed [[Reader (academic rank)|reader]] in the [[School of Mathematics, University of Manchester|Mathematics Department]] at the [[Victoria University of Manchester]]. A year later, he became deputy director of the Computing Machine Laboratory, where he worked on software for one of the earliest [[Von Neumann architecture|stored-program]] computers—the [[Manchester Mark 1]]. Turing wrote the first version of the Programmer's Manual for this machine, and was recruited by Ferranti as a consultant in the development of their commercialised machine, the Ferranti Mark 1. He continued to be paid consultancy fees by Ferranti until his death.<ref>{{Cite book|url=https://www.manturing.net/|title=Alan Turing's Manchester|last=Swinton|first=Jonathan|publisher=Infang Publishing|year=2019|isbn=978-0-9931789-2-4|location=Manchester|access-date=18 March 2019|archive-url=https://web.archive.org/web/20190217172318/https://www.manturing.net/|archive-date=17 February 2019|url-status=live}}</ref> During this time, he continued to do more abstract work in mathematics,<ref name="doi10.1093/qjmam/1.1.287">{{Cite journal|last1 = Turing |first1 = A.M.|doi = 10.1093/qjmam/1.1.287 |title = Rounding-Off Errors in Matrix Processes |journal = The Quarterly Journal of Mechanics and Applied Mathematics |volume = 1| pages = 287–308 |year = 1948|hdl = 10338.dmlcz/103139}}</ref> and in "[[Computing Machinery and Intelligence]]" (''[[Mind (journal)|Mind]]'', October 1950), Turing addressed the problem of [[artificial intelligence]], and proposed an experiment that became known as the [[Turing test]], an attempt to define a standard for a machine to be called "intelligent". The idea was that a computer could be said to "think" if a human interrogator could not tell it apart, through conversation, from a human being.<ref>[[Stevan Harnad|Harnad, Stevan]] (2008) [http://eprints.soton.ac.uk/262954/ The Annotation Game: On Turing (1950) on Computing, Machinery and Intelligence] {{Webarchive|url=https://web.archive.org/web/20171018070225/https://eprints.soton.ac.uk/262954/ |date=18 October 2017 }}. In: Epstein, Robert & Peters, Grace (Eds.) ''Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer''. Springer</ref> Harnad, Stevan (2008) The Annotation Game: On Turing (1950) on Computing, Machinery and Intelligence . In: Epstein, Robert & Peters, Grace (Eds.) Parsing the Turing Test: Philosophical and Methodological Issues in the Quest for the Thinking Computer. Springer In the paper, Turing suggested that rather than building a program to simulate the adult mind, it would be better to produce a simpler one to simulate a child's mind and then to subject it to a course of education. A [[Turing test#Reverse Turing test and CAPTCHA|reversed]] form of the Turing test is widely used on the Internet; the [[CAPTCHA]] test is intended to determine whether the user is a human or a computer.
第388行: 第388行:  
1948年,图灵被任命为曼彻斯特维多利亚大学数学系的讲师。一年后,他成为计算机机器实验室的副主任,在那里,他为最早的存储程序计算机之一——曼彻斯特 Mark 1——开发软件。图灵为这台机器写了第一版程序员手册,并被费兰蒂聘为他们商业化机器费兰蒂马克1的开发顾问。他继续支付费朗蒂咨询费,直到他去世。在此期间,他继续从事更多抽象的数学工作,在《计算机器与智能》(1950年10月,心智)一书中,图灵提出了人工智能的问题,并提出了一个后来被称为图灵测试的实验,试图为机器定义一个被称为“智能”的标准。当时的想法是,如果人类审讯者无法通过对话将电脑与人类区分开来,那么电脑就可以说是在“思考”。哈纳德,斯蒂文(2008)的注释游戏: 关于图灵(1950)的计算,机械和智能。年: 爱普斯坦,罗伯特 & 彼得斯,格雷斯(编)解析图灵测试: 思维计算机探索中的哲学与方法论问题。斯普林格在论文中,图灵提出,与其编写一个程序来模拟成人的思维,不如编写一个更简单的程序来模拟儿童的思维,然后对其进行一系列的教育。图灵测试的反向形式在互联网上被广泛使用; CAPTCHA 测试的目的是确定用户是人还是计算机。
 
1948年,图灵被任命为曼彻斯特维多利亚大学数学系的讲师。一年后,他成为计算机机器实验室的副主任,在那里,他为最早的存储程序计算机之一——曼彻斯特 Mark 1——开发软件。图灵为这台机器写了第一版程序员手册,并被费兰蒂聘为他们商业化机器费兰蒂马克1的开发顾问。他继续支付费朗蒂咨询费,直到他去世。在此期间,他继续从事更多抽象的数学工作,在《计算机器与智能》(1950年10月,心智)一书中,图灵提出了人工智能的问题,并提出了一个后来被称为图灵测试的实验,试图为机器定义一个被称为“智能”的标准。当时的想法是,如果人类审讯者无法通过对话将电脑与人类区分开来,那么电脑就可以说是在“思考”。哈纳德,斯蒂文(2008)的注释游戏: 关于图灵(1950)的计算,机械和智能。年: 爱普斯坦,罗伯特 & 彼得斯,格雷斯(编)解析图灵测试: 思维计算机探索中的哲学与方法论问题。斯普林格在论文中,图灵提出,与其编写一个程序来模拟成人的思维,不如编写一个更简单的程序来模拟儿童的思维,然后对其进行一系列的教育。图灵测试的反向形式在互联网上被广泛使用; CAPTCHA 测试的目的是确定用户是人还是计算机。
   −
【最终版】1948年,图灵被任命为曼彻斯特维多利亚大学数学系的读书人。一年后,他成为计算机实验室的副主任,在那里他为最早的存储程序计算机之一——曼彻斯特马克1号开发软件。图灵为这台机器编写了《程序员手册》的第一个版本,并被弗兰蒂公司聘请为他们商业化机器——弗兰蒂马克1号的开发顾问。弗兰蒂继续向他支付咨询费,直到他去世。在此期间,他继续做更抽象的数学工作,并在“机械和智能计算”(看来,1950年10月),图灵解决人工智能的问题,并提出了一个实验,被称为图灵测试,试图定义一个标准的机器被称为“智能”。他们的想法是,如果人类审讯者不能通过对话将计算机与人类区分开来,那么计算机就可以说是在“思考”。《注释游戏:论图灵(1950):计算、机械和智能》。见:Epstein, Robert & Peters, Grace(编著)解析图灵测试:探索有思维的计算机的哲学和方法论问题。在这篇论文中,图灵建议,与其开发一个模拟成人思维的程序,不如开发一个更简单的程序来模拟儿童的思维,然后对其进行教育。图灵测试的一种反形式在互联网上被广泛使用;验证码测试的目的是确定用户是人还是计算机。
+
【最终版】1948年,图灵被任命为曼彻斯特维多利亚大学数学系的读书人。一年后,他成为计算机实验室的副主任,在那里他为最早的存储程序计算机之一——曼彻斯特马克1号开发软件。图灵为这台机器编写了《程序员手册》的第一个版本,并被弗兰蒂公司聘请为他们商业化机器——弗兰蒂马克1号的开发顾问。弗兰蒂继续向他支付咨询费,直到他去世。在此期间,他继续做更抽象的数学工作,并在“机械和智能计算”(看来,1950年10月),图灵解决人工智能的问题,并提出了一个实验,被称为图灵测试,试图定义一个标准的机器被称为“智能”。他们的想法是,如果人类询问者不能通过对话将计算机与人类区分开来,那么计算机就可以说是在“思考”。《注释游戏:论图灵(1950):计算、机械和智能》。见:Epstein, Robert & Peters, Grace(编著)解析图灵测试:探索有思维的计算机的哲学和方法论问题。在这篇论文中,图灵建议,与其开发一个模拟成人思维的程序,不如开发一个更简单的程序来模拟儿童的思维,然后对其进行教育。图灵测试的一种反形式在互联网上被广泛使用;验证码测试的目的是确定用户是人还是计算机。
    
In 1948 Turing, working with his former undergraduate colleague, [[D.G. Champernowne]], began writing a [[chess]] program for a computer that did not yet exist. By 1950, the program was completed and dubbed the [[Turochamp]].<ref>{{cite magazine|last=Clark|first=Liat|title=Turing's achievements: codebreaking, AI and the birth of computer science|url=https://www.wired.co.uk/news/archive/2012-06/18/turing-contributions?page=all|magazine=Wired|access-date=11 November 2013|archive-url=https://web.archive.org/web/20131102122933/http://www.wired.co.uk/news/archive/2012-06/18/turing-contributions?page=all|archive-date=2 November 2013|url-status=live}}</ref> In 1952, he tried to implement it on a [[Ferranti Mark 1]], but lacking enough power, the computer was unable to execute the program. Instead, Turing "ran" the program by flipping through the pages of the algorithm and carrying out its instructions on a chessboard, taking about half an hour per move. The game was recorded.<ref>[http://www.chessgames.com/perl/chessgame?gid=1356927 Alan Turing vs Alick Glennie (1952) "Turing Test"] {{Webarchive|url=https://web.archive.org/web/20060219033248/http://www.chessgames.com/perl/chessgame?gid=1356927 |date=19 February 2006 }} Chessgames.com</ref> Alan Turing vs Alick Glennie (1952) "Turing Test"  Chessgames.com According to [[Garry Kasparov]], Turing's program "played a recognizable game of chess."<ref>Kasparov, Garry, Smart machines will free us all, ''The Wall Street Journal'', 15–16 April 2017, p. c3</ref> Kasparov, Garry, Smart machines will free us all, The Wall Street Journal, 15–16 April 2017, p. c3  The program lost to Turing's colleague [[Alick Glennie]], although it is said that it won a game against Champernowne's wife, Isabel.<ref>{{cite web|last1=O'Connor|first1=J.J.|last2=Robertson|first2=E.F.|title=David Gawen Champernowne|url=http://www-history.mcs.st-and.ac.uk/Biographies/Champernowne.html|work=MacTutor History of Mathematics archive, School of Mathematics and Statistics, University of St Andrews, Scotland|access-date=22 May 2018|archive-url=https://web.archive.org/web/20171019123016/http://www-history.mcs.st-and.ac.uk/Biographies/Champernowne.html|archive-date=19 October 2017|url-status=live}}</ref>
 
In 1948 Turing, working with his former undergraduate colleague, [[D.G. Champernowne]], began writing a [[chess]] program for a computer that did not yet exist. By 1950, the program was completed and dubbed the [[Turochamp]].<ref>{{cite magazine|last=Clark|first=Liat|title=Turing's achievements: codebreaking, AI and the birth of computer science|url=https://www.wired.co.uk/news/archive/2012-06/18/turing-contributions?page=all|magazine=Wired|access-date=11 November 2013|archive-url=https://web.archive.org/web/20131102122933/http://www.wired.co.uk/news/archive/2012-06/18/turing-contributions?page=all|archive-date=2 November 2013|url-status=live}}</ref> In 1952, he tried to implement it on a [[Ferranti Mark 1]], but lacking enough power, the computer was unable to execute the program. Instead, Turing "ran" the program by flipping through the pages of the algorithm and carrying out its instructions on a chessboard, taking about half an hour per move. The game was recorded.<ref>[http://www.chessgames.com/perl/chessgame?gid=1356927 Alan Turing vs Alick Glennie (1952) "Turing Test"] {{Webarchive|url=https://web.archive.org/web/20060219033248/http://www.chessgames.com/perl/chessgame?gid=1356927 |date=19 February 2006 }} Chessgames.com</ref> Alan Turing vs Alick Glennie (1952) "Turing Test"  Chessgames.com According to [[Garry Kasparov]], Turing's program "played a recognizable game of chess."<ref>Kasparov, Garry, Smart machines will free us all, ''The Wall Street Journal'', 15–16 April 2017, p. c3</ref> Kasparov, Garry, Smart machines will free us all, The Wall Street Journal, 15–16 April 2017, p. c3  The program lost to Turing's colleague [[Alick Glennie]], although it is said that it won a game against Champernowne's wife, Isabel.<ref>{{cite web|last1=O'Connor|first1=J.J.|last2=Robertson|first2=E.F.|title=David Gawen Champernowne|url=http://www-history.mcs.st-and.ac.uk/Biographies/Champernowne.html|work=MacTutor History of Mathematics archive, School of Mathematics and Statistics, University of St Andrews, Scotland|access-date=22 May 2018|archive-url=https://web.archive.org/web/20171019123016/http://www-history.mcs.st-and.ac.uk/Biographies/Champernowne.html|archive-date=19 October 2017|url-status=live}}</ref>
第400行: 第400行:  
他的图灵测试是对人工智能争论的一个重要的、有特点的、持久的贡献,这场争论持续了半个多世纪。
 
他的图灵测试是对人工智能争论的一个重要的、有特点的、持久的贡献,这场争论持续了半个多世纪。
   −
【最终版】他的图灵测试是一个重要的、具有代表性的、具有挑衅性的、对有关人工智能的辩论的持久贡献,这场辩论持续了半个多世纪。
+
【最终版】他的图灵测试是一个重要的、具有代表性的、使人兴奋的、对有关人工智能的辩论的持久贡献,这场辩论持续了半个多世纪。
 
===Pattern formation and mathematical biology模式形成和数学生物学===
 
===Pattern formation and mathematical biology模式形成和数学生物学===
 
When Turing was 39 years old in 1951, he turned to [[Mathematical and theoretical biology|mathematical biology]], finally publishing his masterpiece "[[The Chemical Basis of Morphogenesis]]" in January 1952. He was interested in [[morphogenesis]], the development of patterns and shapes in biological organisms. He suggested that a system of chemicals reacting with each other and diffusing across space, termed a [[reaction–diffusion system]], could account for "the main phenomena of morphogenesis".<ref>{{cite journal | first=Alan M. | last=Turing | author-link=Alan Turing | title=The Chemical Basis of Morphogenesis | journal=Philosophical Transactions of the Royal Society of London B | date=14 August 1952 | doi=10.1098/rstb.1952.0012 | volume=237 | number=641 | pages=37–72 | bibcode=1952RSPTB.237...37T | s2cid=120437796 }}</ref> He used systems of [[partial differential equations]] to model catalytic chemical reactions. For example, if a catalyst A is required for a certain chemical reaction to take place, and if the reaction produced more of the catalyst A, then we say that the reaction is [[autocatalytic]], and there is positive feedback that can be modelled by nonlinear differential equations. Turing discovered that patterns could be created if the chemical reaction not only produced catalyst A, but also produced an inhibitor B that slowed down the production of A. If A and B then diffused through the container at different rates, then you could have some regions where A dominated and some where B did. To calculate the extent of this, Turing would have needed a powerful computer, but these were not so freely available in 1951, so he had to use linear approximations to solve the equations by hand. These calculations gave the right qualitative results, and produced, for example, a uniform mixture that oddly enough had regularly spaced fixed red spots. The Russian biochemist [[Boris Pavlovich Belousov|Boris Belousov]] had performed experiments with similar results, but could not get his papers published because of the contemporary prejudice that any such thing violated the [[second law of thermodynamics]]. Belousov was not aware of Turing's paper in the ''[[Philosophical Transactions of the Royal Society]]''.<ref>John Gribbin, ''Deep Simplicity'', p. 126, Random House, 2004</ref>John Gribbin, Deep Simplicity, p. 126, Random House, 2004
 
When Turing was 39 years old in 1951, he turned to [[Mathematical and theoretical biology|mathematical biology]], finally publishing his masterpiece "[[The Chemical Basis of Morphogenesis]]" in January 1952. He was interested in [[morphogenesis]], the development of patterns and shapes in biological organisms. He suggested that a system of chemicals reacting with each other and diffusing across space, termed a [[reaction–diffusion system]], could account for "the main phenomena of morphogenesis".<ref>{{cite journal | first=Alan M. | last=Turing | author-link=Alan Turing | title=The Chemical Basis of Morphogenesis | journal=Philosophical Transactions of the Royal Society of London B | date=14 August 1952 | doi=10.1098/rstb.1952.0012 | volume=237 | number=641 | pages=37–72 | bibcode=1952RSPTB.237...37T | s2cid=120437796 }}</ref> He used systems of [[partial differential equations]] to model catalytic chemical reactions. For example, if a catalyst A is required for a certain chemical reaction to take place, and if the reaction produced more of the catalyst A, then we say that the reaction is [[autocatalytic]], and there is positive feedback that can be modelled by nonlinear differential equations. Turing discovered that patterns could be created if the chemical reaction not only produced catalyst A, but also produced an inhibitor B that slowed down the production of A. If A and B then diffused through the container at different rates, then you could have some regions where A dominated and some where B did. To calculate the extent of this, Turing would have needed a powerful computer, but these were not so freely available in 1951, so he had to use linear approximations to solve the equations by hand. These calculations gave the right qualitative results, and produced, for example, a uniform mixture that oddly enough had regularly spaced fixed red spots. The Russian biochemist [[Boris Pavlovich Belousov|Boris Belousov]] had performed experiments with similar results, but could not get his papers published because of the contemporary prejudice that any such thing violated the [[second law of thermodynamics]]. Belousov was not aware of Turing's paper in the ''[[Philosophical Transactions of the Royal Society]]''.<ref>John Gribbin, ''Deep Simplicity'', p. 126, Random House, 2004</ref>John Gribbin, Deep Simplicity, p. 126, Random House, 2004
49

个编辑

导航菜单