更改

跳到导航 跳到搜索
删除28,386字节 、 2022年4月21日 (四) 01:18
无编辑摘要
第20行: 第20行:  
平衡热力学和非平衡热力学有很大的区别。平衡热力学忽略物理过程的时间过程。相反,非平衡态热力学则试图连续而详细地描述它们的时间过程。平衡热力学和非平衡热力学有很大的区别。
 
平衡热力学和非平衡热力学有很大的区别。平衡热力学忽略物理过程的时间过程。相反,非平衡态热力学则试图连续而详细地描述它们的时间过程。平衡热力学和非平衡热力学有很大的区别。
    +
平衡热力学在分析过程中仅将其考虑因素限制在具有热力学平衡的初始状态和最终状态上,而其时间过程的分析被有意地忽略了。因此,对于反应过程中处于远非平衡状态下的系统,平衡热力学都不对其系统过程进行分析<ref name="EY 5">[[Elliott H. Lieb|Lieb, E.H.]], [[Jakob Yngvason|Yngvason, J.]] (1999), p.&nbsp;5.</ref> 。而实际上,即使通过非平衡热力学所允许的变量(例如温度和压力的时间变化率)也无法对远离平衡状态的过程进行描述<ref>Gyarmati, I. (1967/1970), pp.&nbsp;8–12.</ref> 。例如,在平衡热力学中,可以包含一个猛烈的爆炸过程,但该过程是无法用非平衡热力学来描述的<ref name="EY 5"/> 。尽管如此,为了发展推进理论研究,平衡热力学确实使用了“准静态过程”这样的理想概念描述类似的系统。准静态过程指的是沿着热力学平衡状态的连续路径,进行的概念性(不受时间影响且物理上不可能)平滑数学分析过程<ref>[[Herbert Callen|Callen, H.B.]] (1960/1985), §&nbsp;4–2.</ref> 。这整个反应过程存在于微分几何中,而在实际情况下往往是不可能发生的。
       +
另一方面,非平衡热力学试图描述连续的时间过程,需要其状态变量与平衡热力学的'''<font color="#ff8000"> 状态变量State variables</font>'''保持非常紧密的联系<ref>Glansdorff, P., Prigogine, I. (1971), Ch. {{math|II}},§&nbsp;2.</ref> 。这极大地限制了非平衡热力学的范围,并对它的概念框架提出了很高的要求。
   −
Equilibrium thermodynamics restricts its considerations to processes that have initial and final states of thermodynamic equilibrium; the time-courses of processes are deliberately ignored. Consequently, equilibrium thermodynamics allows processes that pass through states far from thermodynamic equilibrium, that cannot be described even by the variables admitted for non-equilibrium thermodynamics,<ref name="EY 5">[[Elliott H. Lieb|Lieb, E.H.]], [[Jakob Yngvason|Yngvason, J.]] (1999), p.&nbsp;5.</ref> such as time rates of change of temperature and pressure.<ref>Gyarmati, I. (1967/1970), pp.&nbsp;8–12.</ref> For example, in equilibrium thermodynamics, a process is allowed to include even a violent explosion that cannot be described by non-equilibrium thermodynamics.<ref name="EY 5"/> Equilibrium thermodynamics does, however, for theoretical development, use the idealized concept of the "quasi-static process". A quasi-static process is a conceptual (timeless and physically impossible) smooth mathematical passage along a continuous path of states of thermodynamic equilibrium.<ref>[[Herbert Callen|Callen, H.B.]] (1960/1985), §&nbsp;4–2.</ref> It is an exercise in differential geometry rather than a process that could occur in actuality.
  −
  −
Equilibrium thermodynamics restricts its considerations to processes that have initial and final states of thermodynamic equilibrium; the time-courses of processes are deliberately ignored. Consequently, equilibrium thermodynamics allows processes that pass through states far from thermodynamic equilibrium, that cannot be described even by the variables admitted for non-equilibrium thermodynamics, such as time rates of change of temperature and pressure. For example, in equilibrium thermodynamics, a process is allowed to include even a violent explosion that cannot be described by non-equilibrium thermodynamics. It is an exercise in differential geometry rather than a process that could occur in actuality.
  −
  −
平衡热力学在分析过程中仅将其考虑因素限制在具有热力学平衡的初始状态和最终状态上;而其时程分析被故意忽略。因此,对于反应过程中处于远非平衡状态下的系统,平衡热力学都选择放过不进行分析,而实际上,即使通过非平衡热力学所允许的变量(例如温度和压力的时间变化率)也无法对该过程进行描述。例如,在平衡热力学中,甚至可以包含一个猛烈的爆炸过程,该过程无法用非平衡热力学来描述。但是,为了进行理论发展地研究,平衡热力学确实使用了“准静态过程”的理想概念。准静态过程指的是沿着热力学平衡状态的连续路径,进行的概念性(不受时间影响且物理上不可能)平滑数学分析过程。这整个反应过程存在于微分几何中,而不是实际可能发生的情况下。
  −
  −
  −
Non-equilibrium thermodynamics, on the other hand, attempting to describe continuous time-courses, needs its [[State function|state variables]] to have a very close connection with those of equilibrium thermodynamics.<ref>Glansdorff, P., Prigogine, I. (1971), Ch. {{math|II}},§&nbsp;2.</ref> This profoundly restricts the scope of non-equilibrium thermodynamics, and places heavy demands on its conceptual framework.
  −
  −
Non-equilibrium thermodynamics, on the other hand, attempting to describe continuous time-courses, needs its state variables to have a very close connection with those of equilibrium thermodynamics. This profoundly restricts the scope of non-equilibrium thermodynamics, and places heavy demands on its conceptual framework.
  −
  −
另一方面,非平衡热力学试图描述连续的时间过程,需要其状态变量与平衡热力学的'''<font color="#ff8000"> 状态变量State variables</font>'''保持非常紧密的联系。这极大地限制了非平衡热力学的范围,并对它的概念框架提出了很高的要求。
        第40行: 第30行:  
=== Non-equilibrium state variables 非平衡状态变量 ===
 
=== Non-equilibrium state variables 非平衡状态变量 ===
   −
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. On occasions when the system happens to be in states that are sufficiently close to thermodynamic equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and energy. In general, non-equilibrium thermodynamic systems are spatially and temporally non-uniform, but their non-uniformity still has a sufficient degree of smoothness to support the existence of suitable time and space derivatives of non-equilibrium state variables. Because of the spatial non-uniformity, non-equilibrium state variables that correspond to extensive thermodynamic state variables have to be defined as spatial densities of the corresponding extensive equilibrium state variables. On occasions when the system is sufficiently close to thermodynamic equilibrium, intensive non-equilibrium state variables, for example temperature and pressure, correspond closely with equilibrium state variables. It is necessary that measuring probes be small enough, and rapidly enough responding, to capture relevant non-uniformity. Further, the non-equilibrium state variables are required to be mathematically functionally related to one another in ways that suitably resemble corresponding relations between equilibrium thermodynamic state variables.<ref name="Gyarmati 1970"/> In reality, these requirements are very demanding, and it may be difficult or practically, or even theoretically, impossible to satisfy them. This is part of why non-equilibrium thermodynamics is a work in progress.
  −
  −
The suitable relationship that defines non-equilibrium thermodynamic state variables is as follows. On occasions when the system happens to be in states that are sufficiently close to thermodynamic equilibrium, non-equilibrium state variables are such that they can be measured locally with sufficient accuracy by the same techniques as are used to measure thermodynamic state variables, or by corresponding time and space derivatives, including fluxes of matter and energy. In general, non-equilibrium thermodynamic systems are spatially and temporally non-uniform, but their non-uniformity still has a sufficient degree of smoothness to support the existence of suitable time and space derivatives of non-equilibrium state variables. Because of the spatial non-uniformity, non-equilibrium state variables that correspond to extensive thermodynamic state variables have to be defined as spatial densities of the corresponding extensive equilibrium state variables. On occasions when the system is sufficiently close to thermodynamic equilibrium, intensive non-equilibrium state variables, for example temperature and pressure, correspond closely with equilibrium state variables. It is necessary that measuring probes be small enough, and rapidly enough responding, to capture relevant non-uniformity. Further, the non-equilibrium state variables are required to be mathematically functionally related to one another in ways that suitably resemble corresponding relations between equilibrium thermodynamic state variables. Onsager 1931, also), time rate of entropy production (Onsager 1931), dissipative structure, but they are hardly touched on in the present article.
     −
定义非平衡热力学状态变量的关系如下:在系统恰好处于很接近热力学平衡状态的情况下,非平衡状态变量可以通过与测量热力学状态变量相同的技术,或通过相应的时空导数,包括物质和能量通量,以足够的精度在本地进行测量。通常,非平衡热力学系统在空间和时间上都是非均匀的,但是它们的非均匀性仍然具有足够的平滑度,以保证非平衡状态变量的时空导数适当存在。另外由于空间的不均匀性,必须将非平衡状态变量(对应于广义热力学状态变量)定义为相应的广义平衡状态变量的空间密度。在系统足够接近热力学平衡的情况下,密集的非平衡状态变量(例如温度和压力)与平衡状态变量紧密对应。测量时探头必须足够小,并且响应速度要足够快,以捕获相关的不均匀性。此外,要求非平衡状态变量在数学上彼此函数相关,其方式应类似于平衡热力学状态变量之间的对应关系。实际上,这些要求非常苛刻,可能很难实现,或实际上,甚至在理论上无法满足它们。这就是非平衡热力学的研究一直处在探索中的部分原因。
+
定义非平衡热力学状态变量的关系如下:在系统恰好处于很接近热力学平衡状态的情况下,非平衡状态变量可以通过与测量热力学状态变量相同的技术,或通过相应的时空导数,包括物质和能量通量,以足够的精度在本地进行测量。通常,非平衡热力学系统在空间和时间上都是非均匀的,但是它们的非均匀性仍然具有足够的平滑度,以保证非平衡状态变量的时空导数适当存在。另外由于空间的不均匀性,必须将非平衡状态变量(对应于广义热力学状态变量)定义为相应的广义平衡状态变量的空间密度。在系统足够接近热力学平衡的情况下,密集的非平衡状态变量(例如温度和压力)与平衡状态变量紧密对应。测量时的精度必须足够精细,并且响应速度要足够快,以捕获相关的不均匀性。此外,要求非平衡状态变量在数学上彼此函数相关,其方式应类似于平衡热力学状态变量之间的对应关系<ref name="Gyarmati 1970">Gyarmati, I. (1967/1970).</ref> 。实际上,这些要求非常苛刻,可能现实中很难实现,甚至在理论上无法满足实现的条件。这就是非平衡热力学的研究一直处在探索中的部分原因。
    
== Overview 概述 ==
 
== Overview 概述 ==
   −
Non-equilibrium thermodynamics is a work in progress, not an established edifice. This article is an attempt to sketch some approaches to it and some concepts important for it.
+
非平衡热力学目前仍然处在探索中,是一个不断发展的过程,不是一个既定的体系。这里仅试图概述一些与其相关的方法和一些重要的概念。
   −
非平衡热力学目前仍然处在探索中,距离理论成熟仍需要一定时间。本文试图勾勒出一些方法和一些重要的概念。
     −
 
+
对于非平衡热力学,特别重要的一些概念包括:能量耗散的时间速率(Rayleigh 1873<ref name="Rayleigh 1873">{{Cite journal | last1 = Strutt | first1 = J. W. | doi = 10.1112/plms/s1-4.1.357 | title = Some General Theorems relating to Vibrations | journal = Proceedings of the London Mathematical Society | year = 1871 | volume = s1-4 | pages = 357–368 | url = https://zenodo.org/record/1447754 }}</ref> ,Onsager 1931<ref name="Onsager 1931 I">{{Cite journal | doi = 10.1103/PhysRev.37.405 | last1 = Onsager | first1 = L. | year = 1931 | title = Reciprocal relations in irreversible processes, I | url = | journal = Physical Review | volume = 37 | issue = 4| pages = 405–426 |bibcode = 1931PhRv...37..405O | doi-access = free }}</ref> <ref name="Gyarmati 1970" /><ref name="Lavenda 1978">Lavenda, B.H. (1978). ''Thermodynamics of Irreversible Processes'', Macmillan, London, {{ISBN|0-333-21616-4}}.</ref>),熵产生的时间速率(Onsager 1931<ref name="Onsager 1931 I" /> ),热力学场<ref>Gyarmati, I. (1967/1970), pages 4-14.</ref><ref name="Ziegler 1983">Ziegler, H., (1983). ''An Introduction to Thermomechanics'', North-Holland, Amsterdam, {{ISBN|0-444-86503-9}}.</ref><ref name="Balescu">Balescu, R. (1975). ''Equilibrium and Non-equilibrium Statistical Mechanics'', Wiley-Interscience, New York, {{ISBN|0-471-04600-0}}, Section 3.2, pages 64-72.</ref>'''<font color="#ff8000"> 耗散结构Dissipative structure</font>'''<ref name="G&P 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability, and Fluctuations'', Wiley-Interscience, London, 1971, {{ISBN|0-471-30280-5}}.</ref> 和非线性动力学结构<ref name="Lavenda 1978" />。
 
  −
Some concepts of particular importance for non-equilibrium thermodynamics include time rate of dissipation of energy (Rayleigh 1873,<ref name="Rayleigh 1873">{{Cite journal | last1 = Strutt | first1 = J. W. | doi = 10.1112/plms/s1-4.1.357 | title = Some General Theorems relating to Vibrations | journal = Proceedings of the London Mathematical Society | year = 1871 | volume = s1-4 | pages = 357–368 | url = https://zenodo.org/record/1447754 }}</ref> [[Lars Onsager|Onsager]] 1931,<ref name="Onsager 1931 I">{{Cite journal | doi = 10.1103/PhysRev.37.405 | last1 = Onsager | first1 = L. | year = 1931 | title = Reciprocal relations in irreversible processes, I | url = | journal = Physical Review | volume = 37 | issue = 4| pages = 405–426 |bibcode = 1931PhRv...37..405O | doi-access = free }}</ref> also<ref name="Gyarmati 1970">Gyarmati, I. (1967/1970).</ref><ref name="Lavenda 1978">Lavenda, B.H. (1978). ''Thermodynamics of Irreversible Processes'', Macmillan, London, {{ISBN|0-333-21616-4}}.</ref>), time rate of entropy production (Onsager 1931),<ref name="Onsager 1931 I"/> thermodynamic fields,<ref>Gyarmati, I. (1967/1970), pages 4-14.</ref><ref name="Ziegler 1983">Ziegler, H., (1983). ''An Introduction to Thermomechanics'', North-Holland, Amsterdam, {{ISBN|0-444-86503-9}}.</ref><ref name="Balescu">Balescu, R. (1975). ''Equilibrium and Non-equilibrium Statistical Mechanics'', Wiley-Interscience, New York, {{ISBN|0-471-04600-0}}, Section 3.2, pages 64-72.</ref> [[dissipative structure]],<ref name="G&P 1971"/> and non-linear dynamical structure.<ref name="Lavenda 1978"/>
  −
 
  −
对于非平衡热力学,特别重要的一些概念包括:能量耗散的时间速率(Rayleigh 1873,Onsager 1931),熵产生的时间速率(Onsager 1931),热力学场,'''<font color="#ff8000"> 耗散结构Dissipative structure</font>'''和非线性动力学结构。
  −
 
  −
 
  −
 
  −
One problem of interest is the thermodynamic study of non-equilibrium [[steady state]]s, in which [[entropy]] production and some [[flux|flows]] are non-zero, but there is no [[Time-variant system|time variation]] of physical variables.
      
感兴趣的问题之一是对'''<font color="#ff8000"> 非平衡稳态Non-equilibrium steady states</font>'''的热力学研究,其中包括熵产生,和某些非零流量,不过这些物理变量不具有时间变化性。
 
感兴趣的问题之一是对'''<font color="#ff8000"> 非平衡稳态Non-equilibrium steady states</font>'''的热力学研究,其中包括熵产生,和某些非零流量,不过这些物理变量不具有时间变化性。
    +
有一种分析非平衡热力学的初始方法被称为“'''<font color="#ff8000"> 经典不可逆热力学Classical irreversible thermodynamics</font>'''”<ref name="Lebon Jou Casas-Vázquez 2008"/> 。同时还有其他方法例如:'''<font color="#ff8000"> 扩展的不可逆热力学Extended irreversible thermodynamics<ref name="Lebon Jou Casas-Vázquez 2008" /><ref name="JCVL 1993">Jou, D., Casas-Vázquez, J., Lebon, G. (1993). ''Extended Irreversible Thermodynamics'', Springer, Berlin, {{ISBN|3-540-55874-8}}, {{ISBN|0-387-55874-8}}.</ref></font>''' 和'''<font color="#ff8000"> 广义热力学Generalized thermodynamics<ref>Eu, B.C. (2002).</ref></font>''' ,但在本文中并没有涉及。
   −
  −
One initial approach to non-equilibrium thermodynamics is sometimes called 'classical irreversible thermodynamics'.<ref name="Lebon Jou Casas-Vázquez 2008"/> There are other approaches to non-equilibrium thermodynamics, for example [[extended irreversible thermodynamics]],<ref name="Lebon Jou Casas-Vázquez 2008"/><ref name="JCVL 1993"/> and generalized thermodynamics,<ref>Eu, B.C. (2002).</ref> but they are hardly touched on in the present article.
  −
  −
有一种分析非平衡热力学的初始方法被称为“'''<font color="#ff8000"> 经典不可逆热力学Classical irreversible thermodynamics</font>'''”。同时还有其他方法例如:'''<font color="#ff8000"> 扩展的不可逆热力学Extended irreversible thermodynamics</font>'''和'''<font color="#ff8000"> 广义热力学Generalized thermodynamics</font>''',但在本文中并没有涉及。
        第74行: 第49行:  
=== Quasi-radiationless non-equilibrium thermodynamics of matter in laboratory conditions 实验室条件下物质的准无辐射非平衡热力学 ===
 
=== Quasi-radiationless non-equilibrium thermodynamics of matter in laboratory conditions 实验室条件下物质的准无辐射非平衡热力学 ===
   −
According to Wildt<ref name="Wildt 1972">{{Cite journal |last=Wildt |first=R. |year=1972 |title=Thermodynamics of the gray atmosphere. IV. Entropy transfer and production |journal=Astrophysical Journal |volume=174 |issue= |pages=69–77 |doi=10.1086/151469 |bibcode=1972ApJ...174...69W}}</ref> (see also Essex<ref name="Essex 1984a">{{Cite journal |last=Essex |first=C. |year=1984a |title=Radiation and the irreversible thermodynamics of climate |journal=Journal of the Atmospheric Sciences |volume=41 |issue=12 |pages=1985–1991 |doi=10.1175/1520-0469(1984)041<1985:RATITO>2.0.CO;2 |bibcode = 1984JAtS...41.1985E |doi-access=free }}.</ref><ref name="Essex 1984b">{{Cite journal |last=Essex |first=C. |year=1984b |title=Minimum entropy production in the steady state and radiative transfer |journal=Astrophysical Journal |volume=285 |issue= |pages=279–293 |doi=10.1086/162504 |bibcode=1984ApJ...285..279E}}</ref><ref name="Essex 1984c">{{Cite journal |last=Essex |first=C. |year=1984c |title=Radiation and the violation of bilinearity in the irreversible thermodynamics of irreversible processes |journal=Planetary and Space Science |volume=32 |pages=1035–1043 |doi=10.1016/0032-0633(84)90060-6 |bibcode = 1984P&SS...32.1035E |issue=8 }}</ref>), current versions of non-equilibrium thermodynamics ignore radiant heat; they can do so because they refer to laboratory quantities of matter under laboratory conditions with temperatures well below those of stars. At laboratory temperatures, in laboratory quantities of matter, thermal radiation is weak and can be practically nearly ignored. But, for example, atmospheric physics is concerned with large amounts of matter, occupying cubic kilometers, that, taken as a whole, are not within the range of laboratory quantities; then thermal radiation cannot be ignored.
     −
怀尔德Wild(也参见Essex)认为,当前版本的非平衡热力学忽略了辐射热;之所以可以这么做,是因为它们的研究对象是实验室条件下,温度远低于星体温度的实验室物质量。在实验室温度下,基于实验室物质量,其热辐射非常微弱,几乎可以忽略不计。但是,例如大气物理学中涉及的大量物质,他们占有立方公里的空间,总体上讲,不属于实验室数量范围内;那么其热辐射就不能忽略。
+
怀尔德<ref name="Wildt 1972">{{Cite journal |last=Wildt |first=R. |year=1972 |title=Thermodynamics of the gray atmosphere. IV. Entropy transfer and production |journal=Astrophysical Journal |volume=174 |issue= |pages=69–77 |doi=10.1086/151469 |bibcode=1972ApJ...174...69W}}</ref> (也参见Essex<ref name="Essex 1984a">{{Cite journal |last=Essex |first=C. |year=1984a |title=Radiation and the irreversible thermodynamics of climate |journal=Journal of the Atmospheric Sciences |volume=41 |issue=12 |pages=1985–1991 |doi=10.1175/1520-0469(1984)041<1985:RATITO>2.0.CO;2 |bibcode = 1984JAtS...41.1985E |doi-access=free }}.</ref><ref name="Essex 1984b">{{Cite journal |last=Essex |first=C. |year=1984b |title=Minimum entropy production in the steady state and radiative transfer |journal=Astrophysical Journal |volume=285 |issue= |pages=279–293 |doi=10.1086/162504 |bibcode=1984ApJ...285..279E}}</ref><ref name="Essex 1984c">{{Cite journal |last=Essex |first=C. |year=1984c |title=Radiation and the violation of bilinearity in the irreversible thermodynamics of irreversible processes |journal=Planetary and Space Science |volume=32 |pages=1035–1043 |doi=10.1016/0032-0633(84)90060-6 |bibcode = 1984P&SS...32.1035E |issue=8 }}</ref>)认为,当前版本的非平衡热力学忽略了辐射热。之所以可以这么做,是因为它们的研究对象是实验室条件下,温度远低于恒星温度的实验室物质量。在实验室温度下,基于实验室物质量,其热辐射非常微弱,几乎可以忽略不计。但是,例如大气物理学中涉及的大量物质,他们占有的空间以立方公里计算,总体上讲,不属于实验室数量范围内,那么就不能忽略其热辐射的影响。
       
=== Local equilibrium thermodynamics 局部平衡热力学 ===
 
=== Local equilibrium thermodynamics 局部平衡热力学 ===
   −
The terms 'classical irreversible thermodynamics'<ref name="Lebon Jou Casas-Vázquez 2008"/> and 'local equilibrium thermodynamics' are sometimes used to refer to a version of non-equilibrium thermodynamics that demands certain simplifying assumptions, as follows. The assumptions have the effect of making each very small volume element of the system effectively homogeneous, or well-mixed, or without an effective spatial structure, and without kinetic energy of bulk flow or of diffusive flux. Even within the thought-frame of classical irreversible thermodynamics, care<ref name="Lavenda 1978"/> is needed in choosing the independent variables<ref>Prigogine, I., Defay, R. (1950/1954). ''Chemical Thermodynamics'', Longmans, Green & Co, London, page 1.</ref> for systems. In some writings, it is assumed that the intensive variables of equilibrium thermodynamics are sufficient as the independent variables for the task (such variables are considered to have no 'memory', and do not show hysteresis); in particular, local flow intensive variables are not admitted as independent variables; local flows are considered as dependent on quasi-static local intensive variables.
     −
术语“经典不可逆热力学”和“局部平衡热力学”有时用于指代那些需要简化假设的非平衡热力学。这些假设的作用是使系统中每个非常小体积的元素能有效地均质化,或混合充分,或无有效的空间结构,同时也没有大流量或扩散通量的动能。即使在经典不可逆热力学的思想框架内,在选择系统的自变量时也需要谨慎。在某些著作中,假设平衡热力学的密集变量足以作为研究的自变量(此类变量被认为没有“内存”,并且不显示迟滞);不允许将局部流量密集型变量视为自变量;本地流量被认为依赖于准静态局部集约变量。
+
术语“经典不可逆热力学”<ref name="Lebon Jou Casas-Vázquez 2008" /> 和“局部平衡热力学”有时用于指代那些需要简化假设的非平衡热力学。这些假设的作用是使系统中每个非常小体积的元素能有效地均质化,或混合充分,或无有效的空间结构,同时也没有大流量或扩散通量的动能。即使在经典不可逆热力学的思想框架内,在选择系统的自变量时也需要谨慎<ref name="Lavenda 1978" /> 。在某些著作中,假设平衡热力学的密集变量足以作为研究的自变量(此类变量被认为没有记忆效应,并且不显示迟滞)<ref>Prigogine, I., Defay, R. (1950/1954). ''Chemical Thermodynamics'', Longmans, Green & Co, London, page 1.</ref> 。特别地,局部流密集变量不被承认为自变量,局部流被认为依赖于准静态局部密集变量。
       +
同时还假设局部熵密度与热力学平衡中的其他局部强度变量的函数相同。这称为局部热力学平衡假设<ref name="Gyarmati 1970"/><ref name="Lavenda 1978"/><ref name="G&P 1971" /><ref name="JCVL 1993" /><ref name="De Groot Mazur 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North-Holland, Amsterdam.</ref><ref name="Balescu 1975">Balescu, R. (1975). ''Equilibrium and Non-equilibrium Statistical Mechanics'', John Wiley & Sons, New York, {{ISBN|0-471-04600-0}}.</ref><ref name="Mihalas Mihalas 1984">[http://www.filestube.com/9c5b2744807c2c3d03e9/details.html Mihalas, D., Weibel-Mihalas, B. (1984). ''Foundations of Radiation Hydrodynamics'', Oxford University Press, New York] {{ISBN|0-19-503437-6}}.</ref><ref name="Schloegl 1989">Schloegl, F. (1989). ''Probability and Heat: Fundamentals of Thermostatistics'', Freidr. Vieweg & Sohn, Braunschweig, {{ISBN|3-528-06343-2}}.</ref> (另请参见Keizer(1987)<ref name="Keizer 1987">Keizer, J. (1987). ''Statistical Thermodynamics of Nonequilibrium Processes'', Springer-Verlag, New York, {{ISBN|0-387-96501-7}}.</ref>)。需要注意的是辐射被忽略了,因为它是区域之间的能量转移,而这些区域可能彼此远离。在经典的不可逆热力学方法中,允许非常小的空间变化,从很小的体积元素到相邻的很小的体积元素,但是是基于假设可以将局部熵密度进行简单的空间积分来找到系统的全局熵的。这意味着空间结构无法适当地为系统全局熵的评估做出贡献。这种方法假设了空间和时间的连续性,甚至假设了局部定义的强度变量(例如温度和内部能量密度)的可微性。所有这些都是非常严格的要求。因此,这种方法只能处理非常有限的现象。不过这种方法很有价值,因为它可以很好地处理一些宏观上可观察到的现象。
   −
Also it is assumed that the local entropy density is the same function of the other local intensive variables as in equilibrium; this is called the local thermodynamic equilibrium assumption<ref name="Gyarmati 1970"/><ref name="Lavenda 1978"/><ref name="G&P 1971">Glansdorff, P., Prigogine, I. (1971). ''Thermodynamic Theory of Structure, Stability, and Fluctuations'', Wiley-Interscience, London, 1971, {{ISBN|0-471-30280-5}}.</ref><ref name="JCVL 1993">Jou, D., Casas-Vázquez, J., Lebon, G. (1993). ''Extended Irreversible Thermodynamics'', Springer, Berlin, {{ISBN|3-540-55874-8}}, {{ISBN|0-387-55874-8}}.</ref><ref name="De Groot Mazur 1962">De Groot, S.R., Mazur, P. (1962). ''Non-equilibrium Thermodynamics'', North-Holland, Amsterdam.</ref><ref name="Balescu 1975">Balescu, R. (1975). ''Equilibrium and Non-equilibrium Statistical Mechanics'', John Wiley & Sons, New York, {{ISBN|0-471-04600-0}}.</ref><ref name="Mihalas Mihalas 1984">[http://www.filestube.com/9c5b2744807c2c3d03e9/details.html Mihalas, D., Weibel-Mihalas, B. (1984). ''Foundations of Radiation Hydrodynamics'', Oxford University Press, New York] {{ISBN|0-19-503437-6}}.</ref><ref name="Schloegl 1989">Schloegl, F. (1989). ''Probability and Heat: Fundamentals of Thermostatistics'', Freidr. Vieweg & Sohn, Braunschweig, {{ISBN|3-528-06343-2}}.</ref> (see also Keizer (1987)<ref name="Keizer 1987">Keizer, J. (1987). ''Statistical Thermodynamics of Nonequilibrium Processes'', Springer-Verlag, New York, {{ISBN|0-387-96501-7}}.</ref>). Radiation is ignored because it is transfer of energy between regions, which can be remote from one another. In the classical irreversible thermodynamic approach, there is allowed very small spatial variation, from very small volume element to adjacent very small volume element, but it is assumed that the global entropy of the system can be found by simple spatial integration of the local entropy density; this means that spatial structure cannot contribute as it properly should to the global entropy assessment for the system. This approach assumes spatial and temporal continuity and even differentiability of locally defined intensive variables such as temperature and internal energy density. All of these are very stringent demands. Consequently, this approach can deal with only a very limited range of phenomena. This approach is nevertheless valuable because it can deal well with some macroscopically observable phenomena.{{examples|date=February 2015}}
+
在其他研究著作中,还考虑了局部流动变量。其经典思想是将局部热量认为是通过不断循环产生的长效定常时均的流量,其相关例子如'''<font color="#ff8000"> 热电现象Thermoelectric phenomena</font>''',即'''<font color="#ff8000"> 塞贝克效应Seebeck effect</font>'''和'''<font color="#ff8000"> 珀尔帖效应Peltier effect</font>''',由开尔文Kelvin在19世纪和拉尔斯·昂萨格Lars Onsager在20世纪提出<ref name="De Groot Mazur 1962" /><ref>Kondepudi, D. (2008). ''Introduction to Modern Thermodynamics'', Wiley, Chichester UK, {{ISBN|978-0-470-01598-8}}, pages 333-338.</ref> 。这些效应发生在金属链接处,这些链接最初被有效地视为二维表面,没有空间体积,也没有空间变化。
   −
同时还假设局部熵密度与热力学平衡中的其他局部强度变量的函数相同。这称为局部热力学平衡假设(另请参见Keizer(1987)。需要注意的是辐射被忽略了,因为它是区域之间的能量转移,而这些区域可能彼此远离。在经典的不可逆热力学方法中,允许非常小的空间变化,从很小的体积元素到相邻的很小的体积元素,但是是基于假设可以将局部熵密度进行简单的空间积分来找到系统的全局熵的。这意味着空间结构无法适当地为系统全局熵的评估做出贡献。这种方法假设了空间和时间的连续性,甚至假设了局部定义的强度变量(例如温度和内部能量密度)的可微性。所有这些都是非常严格的要求。因此,这种方法只能处理非常有限的现象。不过这种方法很有价值,因为它可以很好地处理一些宏观上可观察到的现象。
           −
In other writings, local flow variables are considered; these might be considered as classical by analogy with the time-invariant long-term time-averages of flows produced by endlessly repeated cyclic processes; examples with flows are in the [[thermoelectric effect|thermoelectric phenomena]] known as the Seebeck and the Peltier effects, considered by [[William Thomson, 1st Baron Kelvin|Kelvin]] in the nineteenth century and by [[Lars Onsager]] in the twentieth.<ref name="De Groot Mazur 1962"/><ref>Kondepudi, D. (2008). ''Introduction to Modern Thermodynamics'', Wiley, Chichester UK, {{ISBN|978-0-470-01598-8}}, pages 333-338.</ref> These effects occur at metal junctions, which were originally effectively treated as two-dimensional surfaces, with no spatial volume, and no spatial variation.
+
==== Local equilibrium thermodynamics with materials with "memory" 具有“记忆”材料的局部平衡热力学 ====
 
  −
在其他研究著作中,还考虑了局部流动变量。其经典思想是将局部热量认为是通过不断循环产生的长效定常时均的流量,其相关例子如'''<font color="#ff8000"> 热电现象Thermoelectric phenomena</font>''',即'''<font color="#ff8000"> 塞贝克效应Seebeck effect</font>'''和'''<font color="#ff8000"> 珀尔帖效应Peltier effect</font>''',由开尔文Kelvin在19世纪和拉尔斯·昂萨格Lars Onsager在20世纪提出。这些效应发生在金属链接处,这些链接最初被有效地视为二维表面,没有空间体积,也没有空间变化。
  −
 
        −
==== Local equilibrium thermodynamics with materials with "memory" 具有“记忆”材料的局部平衡热力学 ====
+
局部平衡热力学的进一步扩展是允许材料具有“记忆”,因此它们的'''<font color="#ff8000"> 本构方程Constitutive equations</font>'''不仅取决于局部平衡变量的当前值,而且还取决于过去的值。因此,与无记忆材料的依时性局部平衡热力学相比,时间对图像的影响更深,不过通量不是状态的独立变量<ref>{{cite journal | last1 = Coleman | first1 = B.D. | last2 = Noll | first2 = W. | year = 1963 | title = The thermodynamics of elastic materials with heat conduction and viscosity | url = | journal = Arch. Ration. Mach. Analysis | volume = 13 | issue = 1| pages = 167–178 | doi=10.1007/bf01262690| bibcode = 1963ArRMA..13..167C | s2cid = 189793830 }}</ref>
A further extension of local equilibrium thermodynamics is to allow that materials may have "memory", so that their [[constitutive equation]]s depend not only on present values but also on past values of local equilibrium variables. Thus time comes into the picture more deeply than for time-dependent local equilibrium thermodynamics with memoryless materials, but fluxes are not independent variables of state.<ref>{{cite journal | last1 = Coleman | first1 = B.D. | last2 = Noll | first2 = W. | year = 1963 | title = The thermodynamics of elastic materials with heat conduction and viscosity | url = | journal = Arch. Ration. Mach. Analysis | volume = 13 | issue = 1| pages = 167–178 | doi=10.1007/bf01262690| bibcode = 1963ArRMA..13..167C | s2cid = 189793830 }}</ref>
  −
 
  −
局部平衡热力学的进一步扩展是允许材料具有“记忆”,因此它们的'''<font color="#ff8000"> 本构方程Constitutive equations</font>'''不仅取决于局部平衡变量的当前值,而且还取决于过去的值。因此,与无记忆材料的依时性局部平衡热力学相比,时间对图像的影响更深,不过通量不是状态的独立变量。
        第108行: 第75行:  
=== Extended irreversible thermodynamics 扩展的不可逆热力学 ===
 
=== Extended irreversible thermodynamics 扩展的不可逆热力学 ===
   −
'''Extended irreversible thermodynamics''' is a branch of non-equilibrium thermodynamics that goes outside the restriction to the local equilibrium hypothesis. The space of state variables is enlarged by including the [[flux]]es of mass, momentum and energy and eventually higher order fluxes.
      
扩展的不可逆热力学是非平衡热力学的一个分支,它超出了局部平衡假设的限制。通过包括质量,动量和能量通量以及最终的高阶通量来扩大状态变量的空间。
 
扩展的不可逆热力学是非平衡热力学的一个分支,它超出了局部平衡假设的限制。通过包括质量,动量和能量通量以及最终的高阶通量来扩大状态变量的空间。
   −
  −
  −
The formalism is well-suited for describing high-frequency processes and small-length scales materials.
   
该形式体系非常适合描述高频过程和小尺度材料。
 
该形式体系非常适合描述高频过程和小尺度材料。
    
== Basic concepts 基本概念 ==
 
== Basic concepts 基本概念 ==
   −
There are many examples of stationary non-equilibrium systems, some very simple, like a system confined between two thermostats at different temperatures or the ordinary [[Couette flow]], a fluid enclosed between two flat walls moving in opposite directions and defining non-equilibrium conditions at the walls. [[Laser]] action is also a non-equilibrium process, but it depends on departure from local thermodynamic equilibrium and is thus beyond the scope of classical irreversible thermodynamics; here a strong temperature difference is maintained between two molecular degrees of freedom (with molecular laser, vibrational and rotational molecular motion), the requirement for two component 'temperatures' in the one small region of space, precluding local thermodynamic equilibrium, which demands that only one temperature be needed. Damping of acoustic perturbations or shock waves are non-stationary non-equilibrium processes. Driven [[complex fluids]], turbulent systems and glasses are other examples of non-equilibrium systems.
      
静态非平衡系统有许多案例,其中一些非常简单,例如,将一个系统限制在两个温度不同的恒温器之间,或者是常规'''<font color="#ff8000"> 库埃特流体Couette flow</font>'''运动模型的两个平板之间(封闭状态),该平板互相沿反方向运动,而平板壁上需要定义非平衡条件。另外'''<font color="#ff8000"> 激光作用Laser action</font>'''也是一个非平衡过程,但它依赖于从局部热力学平衡出发,因此超出了经典不可逆热力学的范围。在此,两个分子自由度(分子激光,振动和旋转的分子运动)之间维持着明显的温差,要求在一个很小的空间区域中存在两组“温度”组成部分,其中不包括局部热力学平衡,因为后者仅需要一个“温度”。另外声扰动或冲击波阻尼过程是非静态非平衡的过程。而驱动的'''<font color="#ff8000"> 复杂流体Complex fluids</font>''',湍流系统和玻璃是非平衡系统的其他案例。
 
静态非平衡系统有许多案例,其中一些非常简单,例如,将一个系统限制在两个温度不同的恒温器之间,或者是常规'''<font color="#ff8000"> 库埃特流体Couette flow</font>'''运动模型的两个平板之间(封闭状态),该平板互相沿反方向运动,而平板壁上需要定义非平衡条件。另外'''<font color="#ff8000"> 激光作用Laser action</font>'''也是一个非平衡过程,但它依赖于从局部热力学平衡出发,因此超出了经典不可逆热力学的范围。在此,两个分子自由度(分子激光,振动和旋转的分子运动)之间维持着明显的温差,要求在一个很小的空间区域中存在两组“温度”组成部分,其中不包括局部热力学平衡,因为后者仅需要一个“温度”。另外声扰动或冲击波阻尼过程是非静态非平衡的过程。而驱动的'''<font color="#ff8000"> 复杂流体Complex fluids</font>''',湍流系统和玻璃是非平衡系统的其他案例。
   −
  −
  −
The mechanics of macroscopic systems depends on a number of extensive quantities. It should be stressed that all systems are permanently interacting with their surroundings, thereby causing unavoidable fluctuations of [[extensive quantity|extensive quantiti]]es. Equilibrium conditions of thermodynamic systems are related to the maximum property of the entropy. If the only extensive quantity that is allowed to fluctuate is the internal energy, all the other ones being kept strictly constant, the temperature of the system is measurable and meaningful. The system's properties are then most conveniently described using the thermodynamic potential [[Helmholtz free energy]] (''A'' = ''U'' - ''TS''), a [[Legendre transformation]] of the energy. If, next to fluctuations of the energy, the macroscopic dimensions (volume) of the system are left fluctuating, we use the [[Gibbs free energy]] (''G'' = ''U'' + ''PV'' - ''TS''), where the system's properties are determined both by the temperature and by the pressure.
      
宏观系统的力学取决于广延量。这里需要强调的是,所有的系统都在与周围环境永久性地相互作用,从而导致不可避免的大量波动。热力学系统的平衡条件与熵的极限性质有关。如果允许波动的唯一广延量是其内部能量,而所有其他能量都严格保持恒定,则系统温度是可测量且有意义的。那么使用热力学势'''<font color="#ff8000"> 亥姆霍兹自由能Helmholtz free energy</font>'''(A = U-TS)(能量的'''<font color="#ff8000"> 勒让德变换Legendre transformation</font>''')可以最方便地描述系统的属性。如果在能量波动后,系统的宏观尺寸(体积)能同样保持波动,则我们可以使用'''<font color="#ff8000"> 吉布斯自由能</font>'''(G = U + PV-TS),其中系统的特性既取决于温度又取决于压力。
 
宏观系统的力学取决于广延量。这里需要强调的是,所有的系统都在与周围环境永久性地相互作用,从而导致不可避免的大量波动。热力学系统的平衡条件与熵的极限性质有关。如果允许波动的唯一广延量是其内部能量,而所有其他能量都严格保持恒定,则系统温度是可测量且有意义的。那么使用热力学势'''<font color="#ff8000"> 亥姆霍兹自由能Helmholtz free energy</font>'''(A = U-TS)(能量的'''<font color="#ff8000"> 勒让德变换Legendre transformation</font>''')可以最方便地描述系统的属性。如果在能量波动后,系统的宏观尺寸(体积)能同样保持波动,则我们可以使用'''<font color="#ff8000"> 吉布斯自由能</font>'''(G = U + PV-TS),其中系统的特性既取决于温度又取决于压力。
      −
 
+
非平衡系统要复杂得多,并且可能会发生更大范围的波动。边界条件将特殊的强度变量强加给系统,例如温度梯度或扭曲的集体运动(剪切运动,涡旋等),通常称为热力学力。如果自由能在平衡热力学中非常有用,则必须要强调的是,没有任何定律能像热力学第二定律去定义平衡热力学中的熵那样,去定义能量的静态非平衡属性。这就是为什么在这种情况下,应考虑使用更广义的勒让德变换。这是扩展的'''<font color="#ff8000">马休势Massieu potential</font>'''。
Non-equilibrium systems are much more complex and they may undergo fluctuations of more extensive quantities. The boundary conditions impose on them particular intensive variables, like temperature gradients or distorted collective motions (shear motions, vortices, etc.), often called thermodynamic forces. If free energies are very useful in equilibrium thermodynamics, it must be stressed that there is no general law defining stationary non-equilibrium properties of the energy as is the second law of thermodynamics for the [[entropy]] in equilibrium thermodynamics. That is why in such cases a more generalized Legendre transformation should be considered. This is the extended Massieu potential.
  −
 
  −
非平衡系统要复杂得多,并且可能会发生更大范围的波动。边界条件将特殊的强度变量强加给系统,例如温度梯度或扭曲的集体运动(剪切运动,涡旋等),通常称为热力学力。如果自由能在平衡热力学中非常有用,则必须要强调的是,没有任何定律能像热力学第二定律去定义平衡热力学中的熵那样,去定义能量的静态非平衡属性。这就是为什么在这种情况下,应考虑使用更广义的勒让德变换。这是扩展的马休势Massieu potential。
  −
 
  −
 
  −
 
  −
By definition, the [[entropy]] (''S'') is a function of the collection of [[extensive quantity|extensive quantiti]]es <math>E_i</math>. Each extensive quantity has a conjugate intensive variable <math>I_i</math> (a restricted definition of intensive variable is used here by comparison to the definition given in this link) so that:
      
根据定义,熵(S)是广延量集合的函数<math>E_i</math>。每个广延量都有一个共轭强化变量<math>I_i</math>(通过与该链接中给出的定义进行比较,在此使用了强化变量的受限定义):
 
根据定义,熵(S)是广延量集合的函数<math>E_i</math>。每个广延量都有一个共轭强化变量<math>I_i</math>(通过与该链接中给出的定义进行比较,在此使用了强化变量的受限定义):
      
:<math> I_i = \frac{\partial{S}}{\partial{E_i}}.</math>
 
:<math> I_i = \frac{\partial{S}}{\partial{E_i}}.</math>
   −
  −
We then define the extended [[Massieu function]] as follows:
   
然后,我们定义扩展的'''<font color="#ff8000"> 马休函数Massieu function</font>''',如下所示:
 
然后,我们定义扩展的'''<font color="#ff8000"> 马休函数Massieu function</font>''',如下所示:
 +
:<math>\ k_{\rm B} M = S - \sum_i( I_i E_i),</math>
   −
  −
:<math>\ k_{\rm B} M = S - \sum_i( I_i E_i),</math>
        −
where <math>\ k_{\rm B}</math> is [[Boltzmann's constant]], whence
   
其中<math>\ k_{\rm B}</math>是'''<font color="#ff8000"> 玻尔兹曼常数Boltzmann's constant</font>''',因此
 
其中<math>\ k_{\rm B}</math>是'''<font color="#ff8000"> 玻尔兹曼常数Boltzmann's constant</font>''',因此
      
:<math>\ k_{\rm B} \, dM = \sum_i (E_i \, dI_i).</math>
 
:<math>\ k_{\rm B} \, dM = \sum_i (E_i \, dI_i).</math>
  −
  −
The independent variables are the intensities.
      
其自变量是强度。
 
其自变量是强度。
  −
  −
  −
Intensities are global values, valid for the system as a whole. When boundaries impose to the system different local conditions, (e.g. temperature differences), there are intensive variables representing the average value and others representing gradients or higher moments. The latter are the thermodynamic forces driving fluxes of extensive properties through the system.
      
强度是全局值,对整个系统有效。当边界设定强加给系统不同的局部条件(例如,温度差异)时,将存在代表平均值的密集变量,还有一些代表梯度或更高矩的变量。后者是通过系统驱动广延特性通量的热动力。
 
强度是全局值,对整个系统有效。当边界设定强加给系统不同的局部条件(例如,温度差异)时,将存在代表平均值的密集变量,还有一些代表梯度或更高矩的变量。后者是通过系统驱动广延特性通量的热动力。
  −
  −
  −
It may be shown that the Legendre transformation changes the maximum condition of the entropy (valid at equilibrium) in a minimum condition of the extended Massieu function for stationary states, no matter whether at equilibrium or not.
      
可以证明,不管是否建立在平衡状态下,勒让德变换都在扩展的马休函数的最小状态下改变熵(在平衡时有效)的最大状态。
 
可以证明,不管是否建立在平衡状态下,勒让德变换都在扩展的马休函数的最小状态下改变熵(在平衡时有效)的最大状态。
第177行: 第112行:  
== Stationary states, fluctuations, and stability 平稳状态,波动性和稳定性==
 
== Stationary states, fluctuations, and stability 平稳状态,波动性和稳定性==
   −
In thermodynamics one is often interested in a stationary state of a process, allowing that the stationary state include the occurrence of unpredictable and experimentally unreproducible fluctuations in the state of the system. The fluctuations are due to the system's internal sub-processes and to exchange of matter or energy with the system's surroundings that create the constraints that define the process.
     −
在热力学中,人们通常对过程的静态感兴趣,因为它涵盖了系统状态下发生的不可预测的和实验上不可再现的波动。波动是由于系统内部的子过程以及与系统周围的物质或能量交换引起的,从而形成了定义过程的约束。
+
在热力学中,人们通常对过程的静态感兴趣,因为它涵盖了系统状态下发生的不可预测的和实验上不可再现的波动。波动是由于系统内部的子过程以及与系统周围的物质或能量交换引起的,从而这些交换产生了定义过程的约束。
   −
 
+
如果静态反应过程是稳定的,则不可重现的波动会涉及到熵的局部瞬时减小过程。系统的可重现响应是通过不可逆过程将熵增加回最大值:即不能以很大的概率再现波动。除了接近临界点外,关于稳态的波动很小(Kondepudi和Prigogine 1998,第323页 <ref>Kondepudi, D., Prigogine, I, (1998). ''Modern Thermodynamics. From Heat Engines to Dissipative Structures'', Wiley, Chichester, 1998, {{ISBN|0-471-97394-7}}. </ref> )。稳定的静止状态具有局部的熵最大值,并且该系统最可能出现局部性重现响应状态。关于波动的不可逆耗散存在一些与之相关的定理。这里的“局部”是指相对于系统状态下热力学坐标的抽象空间而言的。
 
  −
If the stationary state of the process is stable, then the unreproducible fluctuations involve local transient decreases of entropy. The reproducible response of the system is then to increase the entropy back to its maximum by irreversible processes: the fluctuation cannot be reproduced with a significant level of probability. Fluctuations about stable stationary states are extremely small except near critical points (Kondepudi and Prigogine 1998, page 323). <ref>Kondepudi, D., Prigogine, I, (1998). ''Modern Thermodynamics. From Heat Engines to Dissipative Structures'', Wiley, Chichester, 1998, {{ISBN|0-471-97394-7}}. </ref> The stable stationary state has a local maximum of entropy and is locally the most reproducible state of the system. There are theorems about the irreversible dissipation of fluctuations. Here 'local' means local with respect to the abstract space of thermodynamic coordinates of state of the system.
  −
 
  −
如果静态反应过程是稳定的,则不可重现的波动会涉及到熵的局部瞬时减小过程。系统的可重现响应是通过不可逆过程将熵增加回最大值:即不能以很大的概率再现波动。除了接近临界点外,关于稳态的波动很小(Kondepudi和Prigogine 1998,第323页)。稳定的静止状态具有局部的熵最大值,并且该系统最可能出现局部性重现响应状态。关于波动的不可逆耗散存在一些与之相关的定理。这里的“局部”是指相对于系统状态下热力学坐标的抽象空间而言的。
  −
 
  −
 
  −
 
  −
If the stationary state is unstable, then any fluctuation will almost surely trigger the virtually explosive departure of the system from the unstable stationary state. This can be accompanied by increased export of entropy.
      
如果静态反应过程是不稳定的,那么任何波动都很大概率会触发系统从不稳定的静止状态下产生爆炸,并伴随着熵输出的增加。
 
如果静态反应过程是不稳定的,那么任何波动都很大概率会触发系统从不稳定的静止状态下产生爆炸,并伴随着熵输出的增加。
第195行: 第121行:  
== Local thermodynamic equilibrium 局部热力学平衡 ==
 
== Local thermodynamic equilibrium 局部热力学平衡 ==
   −
The scope of present-day non-equilibrium thermodynamics does not cover all physical processes. A condition for the validity of many studies in non-equilibrium thermodynamics of matter is that they deal with what is known as ''local thermodynamic equilibrium''.
      
当今非平衡热力学的范围并不涵盖所有物理过程。在物质的非平衡热力学中有许多研究有效性的条件是:他们与所谓的局部热力学平衡相关。
 
当今非平衡热力学的范围并不涵盖所有物理过程。在物质的非平衡热力学中有许多研究有效性的条件是:他们与所谓的局部热力学平衡相关。
第202行: 第127行:     
=== Ponderable matter 物质的可估量性===
 
=== Ponderable matter 物质的可估量性===
  −
''Local thermodynamic equilibrium of matter''<ref name="Gyarmati 1970"/><ref name="G&P 1971"/><ref name="Balescu 1975"/><ref name="Mihalas Mihalas 1984"/><ref name="Schloegl 1989"/> (see also Keizer (1987)<ref name="Keizer 1987"/> means that conceptually, for study and analysis, the system can be spatially and temporally divided into 'cells' or 'micro-phases' of small (infinitesimal) size, in which classical thermodynamical equilibrium conditions for matter are fulfilled to good approximation. These conditions are unfulfilled, for example, in very rarefied gases, in which molecular collisions are infrequent; and in the boundary layers of a star, where radiation is passing energy to space; and for interacting fermions at very low temperature, where dissipative processes become ineffective. When these 'cells' are defined, one admits that matter and energy may pass freely between contiguous 'cells', slowly enough to leave the 'cells' in their respective individual local thermodynamic equilibria with respect to intensive variables.
  −
  −
从概念上讲,为了进行研究和分析,物质的局部热力学平衡(另请参见Keizer(1987)可以假设系统在空间和时间上划分为小尺寸(无穷小)的“细胞”或“微相”,那么其中物质的经典热力学平衡条件就能很好地满足。但是仍然存在某些条件无法得到满足,例如在极稀有的气体中,很少会发生分子碰撞;在恒星的边界层,辐射将能量传递到太空;以及在很低的温度下,与费米子的相互作用(其耗散过程变得无效)。当定义了这些“单元”时,人们承认物质和能量可以在相邻的“单元”之间自由地通过,其速度足以使“单元”(相对于强度变量)保持各自的局部热力学平衡。
  −
        −
One can think here of two 'relaxation times' separated by order of magnitude.<ref name="Zubarev 1971/1974">[[Dmitry Zubarev|Zubarev D. N.]],(1974). ''[https://books.google.com/books?id=SQy3AAAAIAAJ&hl=ru&source=gbs_ViewAPI Nonequilibrium Statistical Thermodynamics]'', translated from the Russian by P.J. Shepherd, New York, Consultants Bureau. {{ISBN|0-306-10895-X}}; {{ISBN|978-0-306-10895-2}}.</ref> The longer relaxation time is of the order of magnitude of times taken for the macroscopic dynamical structure of the system to change. The shorter is of the order of magnitude of times taken for a single 'cell' to reach local thermodynamic equilibrium. If these two relaxation times are not well separated, then the classical non-equilibrium thermodynamical concept of local thermodynamic equilibrium loses its meaning<ref name="Zubarev 1971/1974"/> and other approaches have to be proposed, see for instance [[Extended irreversible thermodynamics]]. For example, in the atmosphere, the speed of sound is much greater than the wind speed; this favours the idea of local thermodynamic equilibrium of matter for atmospheric heat transfer studies at altitudes below about 60&nbsp;km where sound propagates, but not above 100&nbsp;km, where, because of the paucity of intermolecular collisions, sound does not propagate.
+
从概念上讲,为了进行研究和分析,物质的局部热力学平衡<ref name="Gyarmati 1970" /><ref name="G&P 1971" /><ref name="Balescu 1975" /><ref name="Mihalas Mihalas 1984" /><ref name="Schloegl 1989" /> (另请参见Keizer(1987)<ref name="Keizer 1987" /> )可以假设系统在空间和时间上划分为小尺寸(无穷小)的“单元”或“微相”,那么其中物质的经典热力学平衡条件就能很好地满足。但是仍然存在某些条件无法得到满足,例如在极稀有的气体中,很少会发生分子碰撞;在恒星的边界层,辐射将能量传递到太空;以及在很低的温度下,与费米子的相互作用(其耗散过程变得无效)。当定义了这些“单元”时,人们承认物质和能量可以在相邻的“单元”之间自由地通过,其速度足以使“单元”(相对于强度变量)保持各自的局部热力学平衡。
   −
在这里,人们可以想到两个“弛豫时间”之间的数量级分隔。较长的弛豫时间约为系统宏观动力学结构发生变化所需的时间量级。较短的是独立“单元”达到局部热力学平衡所需的时间量级。如果这两个驰豫时间没有很好地分开,那么局部热力学平衡的经典非平衡热力学概念就失去了意义,那么必须提出其他方法,例如扩展的不可逆热力学。例如,在大气中,音速远大于风速;这有利于物质的局部热力学平衡的想法,对于在低于60 km的高空进行大气传热研究,声音可以在其中传播,但需要限制在100 km以内,因为分子间碰撞发生的很少,因此声音无法传播。
+
在这里,人们可以想到两个“'''<font color="#ff8000">弛豫时间relaxation times</font>'''”之间的数量级分隔<ref name="Zubarev 1971/1974">[[Dmitry Zubarev|Zubarev D. N.]],(1974). ''[https://books.google.com/books?id=SQy3AAAAIAAJ&hl=ru&source=gbs_ViewAPI Nonequilibrium Statistical Thermodynamics]'', translated from the Russian by P.J. Shepherd, New York, Consultants Bureau. {{ISBN|0-306-10895-X}}; {{ISBN|978-0-306-10895-2}}.</ref> 。较长的弛豫时间约为系统宏观动力学结构发生变化所需的时间量级。较短的是独立“单元”达到局部热力学平衡所需的时间量级。如果这两个驰豫时间没有很好地分开,那么局部热力学平衡的经典非平衡热力学概念就失去了意义<ref name="Zubarev 1971/1974"/> ,那么必须提出其他方法,例如扩展的不可逆热力学。例如,在大气中,音速远大于风速;这有利于物质的局部热力学平衡的想法,对于在低于60 km的高空进行大气传热研究,声音可以在其中传播,但需要限制在100 km以内,因为分子间碰撞发生的很少,因此声音无法传播。
    
=== Milne's definition in terms of radiative equilibrium 米尔恩Milne在辐射平衡系统方面的定义===
 
=== Milne's definition in terms of radiative equilibrium 米尔恩Milne在辐射平衡系统方面的定义===
   −
[[Edward Arthur Milne|Edward A. Milne]], thinking about stars, gave a definition of 'local thermodynamic equilibrium' in terms of the [[thermal radiation]] of the [[matter]] in each small local 'cell'.<ref name="Milne 1928">{{cite journal | last1= Milne |first1= E.A. |year=1928 | title= The effect of collisions on monochromatic radiative equilibrium |journal=[[Monthly Notices of the Royal Astronomical Society]] | volume= 88|issue= 6 |pages=493–502|bibcode=1928MNRAS..88..493M | doi = 10.1093/mnras/88.6.493 |doi-access= free }}</ref> He defined 'local thermodynamic equilibrium' in a 'cell' by requiring that it macroscopically absorb and spontaneously emit radiation as if it were in radiative equilibrium in a cavity at the [[temperature]] of the matter of the 'cell'. Then it strictly obeys Kirchhoff's law of equality of radiative emissivity and absorptivity, with a black body source function. The key to local thermodynamic equilibrium here is that the rate of collisions of ponderable matter particles such as molecules should far exceed the rates of creation and annihilation of photons.
+
爱德华·米尔恩Edward A. Milne在研究恒星时,根据每个局部“小单元”中物质的热辐射来定义“局部热力学平衡”<ref name="Milne 1928">{{cite journal | last1= Milne |first1= E.A. |year=1928 | title= The effect of collisions on monochromatic radiative equilibrium |journal=[[Monthly Notices of the Royal Astronomical Society]] | volume= 88|issue= 6 |pages=493–502|bibcode=1928MNRAS..88..493M | doi = 10.1093/mnras/88.6.493 |doi-access= free }}</ref> 。他通过设定“吸收并自发辐射(宏观意义上)”这一基本要求,定义研究对象处在“细胞”物质温度的空腔中,类似辐射平衡状态一样。然后,它严格遵守关于辐射发射率和吸收率相等的'''<font color="#ff8000">基尔霍夫定律Kirchhoff's law</font>''',以及黑体源函数。这里达到局部热力学平衡的关键在于重要物质颗粒的碰撞速率,例如分子应远远超过光子的产生和湮灭的速率。
 
  −
爱德华·米尔恩Edward A. Milne在研究恒星时,根据每个局部“小单元”中物质的热辐射来定义“局部热力学平衡”。他通过设定“吸收并自发辐射(宏观意义上)”这一基本要求,定义研究对象处在“细胞”物质温度的空腔中,类似辐射平衡状态一样。然后,它严格遵守关于辐射发射率和吸收率相等的基尔霍夫定律Kirchhoff's law,以及黑体源函数。这里达到局部热力学平衡的关键在于重要物质颗粒的碰撞速率,例如分子应远远超过光子的产生和湮灭的速率。
      
== Entropy in evolving systems 进化系统中的熵 ==
 
== Entropy in evolving systems 进化系统中的熵 ==
   −
It is pointed out by W.T. Grandy Jr,<ref>{{cite journal | doi = 10.1023/B:FOOP.0000012007.06843.ed | title = Time Evolution in Macroscopic Systems. I. Equations of Motion | year = 2004 | last1 = Grandy | first1 = W.T., Jr. | journal = Foundations of Physics | volume = 34 | issue = 1 | page = 1 |url=http://physics.uwyo.edu/~tgrandy/evolve.html |arxiv = cond-mat/0303290 |bibcode = 2004FoPh...34....1G }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/entropy.html | doi=10.1023/B:FOOP.0000012008.36856.c1 | title=Time Evolution in Macroscopic Systems. II. The Entropy | year=2004 | last1=Grandy | first1=W.T., Jr. | journal=Foundations of Physics | volume=34 | issue=1 | page=21 |arxiv = cond-mat/0303291 |bibcode = 2004FoPh...34...21G | s2cid=18573684 }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/applications.html | doi = 10.1023/B:FOOP.0000022187.45866.81 | title=Time Evolution in Macroscopic Systems. III: Selected Applications | year=2004 | last1=Grandy | first1=W. T., Jr | journal=Foundations of Physics | volume=34 | issue=5 | page=771 |bibcode = 2004FoPh...34..771G | s2cid = 119406182 }}</ref><ref>Grandy 2004 see also [http://physics.uwyo.edu/~tgrandy/Statistical_Mechanics.html].</ref> that entropy, though it may be defined for a non-equilibrium system is—when strictly considered—only a macroscopic quantity that refers to the whole system, and is not a dynamical variable and in general does not act as a local potential that describes local physical forces. Under special circumstances, however, one can metaphorically think as if the thermal variables behaved like local physical forces. The approximation that constitutes classical irreversible thermodynamics is built on this metaphoric thinking.
  −
  −
WT Grandy Jr小W·T·格兰迪指出,尽管熵可能是为非平衡系统定义的,但严格来说,它只是一个宏观量,是指整个系统,不是动态变量,通常不充当描述局部物理力的局部势能。但是,在特殊情况下,人们可以隐喻地认为热变量的行为就像局部物理力一样。构成经典不可逆热力学的近似想法是建立在这种隐喻思维之上的。
      +
格兰迪指出,尽管熵可能是为非平衡系统定义的,但严格来说,它只是一个宏观量,是指整个系统,不是动态变量,通常不充当描述局部物理力的局部势能<ref>{{cite journal | doi = 10.1023/B:FOOP.0000012007.06843.ed | title = Time Evolution in Macroscopic Systems. I. Equations of Motion | year = 2004 | last1 = Grandy | first1 = W.T., Jr. | journal = Foundations of Physics | volume = 34 | issue = 1 | page = 1 |url=http://physics.uwyo.edu/~tgrandy/evolve.html |arxiv = cond-mat/0303290 |bibcode = 2004FoPh...34....1G }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/entropy.html | doi=10.1023/B:FOOP.0000012008.36856.c1 | title=Time Evolution in Macroscopic Systems. II. The Entropy | year=2004 | last1=Grandy | first1=W.T., Jr. | journal=Foundations of Physics | volume=34 | issue=1 | page=21 |arxiv = cond-mat/0303291 |bibcode = 2004FoPh...34...21G | s2cid=18573684 }}</ref><ref>{{cite journal | url=http://physics.uwyo.edu/~tgrandy/applications.html | doi = 10.1023/B:FOOP.0000022187.45866.81 | title=Time Evolution in Macroscopic Systems. III: Selected Applications | year=2004 | last1=Grandy | first1=W. T., Jr | journal=Foundations of Physics | volume=34 | issue=5 | page=771 |bibcode = 2004FoPh...34..771G | s2cid = 119406182 }}</ref><ref>Grandy 2004 see also [http://physics.uwyo.edu/~tgrandy/Statistical_Mechanics.html].</ref> 。但是,在特殊情况下,人们可以隐喻地认为热变量的行为就像局部物理力一样。构成经典不可逆热力学的近似想法是建立在这种隐喻思维之上的。
    +
这种观点与连续热力学中熵的概念和用法有很多共同点,而后者完全独立于统计力学和最大熵原理而发展<ref>{{cite book| title = Rational Thermodynamics | year = 1984 | last1 = Truesdell | first1 = Clifford | publisher = Springer | edition = 2 }}</ref><ref>{{cite book| title = Continuum Thermomechanics | year = 2002 | last1 = Maugin | first1 = Gérard A. | publisher = Kluwer }}</ref><ref>{{cite book| title = The Mechanics and Thermodynamics of Continua | year = 2010 | last1 = Gurtin | first1 = Morton E. | publisher = Cambridge University Press }}</ref><ref>{{cite book| title = Thermodynamics of Materials with Memory: Theory and Applications | year = 2012| last1 = Amendola | first1 = Giovambattista | publisher = Springer }}</ref> 。
   −
This point of view shares many points in common with the concept and the use of entropy in continuum thermomechanics,<ref>{{cite book| title = Rational Thermodynamics | year = 1984 | last1 = Truesdell | first1 = Clifford | publisher = Springer | edition = 2 }}</ref><ref>{{cite book| title = Continuum Thermomechanics | year = 2002 | last1 = Maugin | first1 = Gérard A. | publisher = Kluwer }}</ref><ref>{{cite book| title = The Mechanics and Thermodynamics of Continua | year = 2010 | last1 = Gurtin | first1 = Morton E. | publisher = Cambridge University Press }}</ref><ref>{{cite book| title = Thermodynamics of Materials with Memory: Theory and Applications | year = 2012| last1 = Amendola | first1 = Giovambattista | publisher = Springer }}</ref> which evolved completely independently of statistical mechanics and maximum-entropy principles.
  −
  −
这种观点与连续热力学中熵的概念和用法有很多共同点,而后者完全独立于统计力学和最大熵原理而发展。
        第235行: 第149行:  
=== Entropy in non-equilibrium 非平衡状态的熵===
 
=== Entropy in non-equilibrium 非平衡状态的熵===
   −
To describe deviation of the thermodynamic system from equilibrium, in addition to constitutive variables <math>x_1, x_2, ..., x_n</math> that are used to fix the equilibrium state, as was described above, a set of variables <math>\xi_1, \xi_2,\ldots</math> that are called ''internal variables'' have been introduced. The equilibrium state is considered to be stable and the main property of the internal variables, as measures of [[non-equilibrium]] of the system, is their trending to disappear; the local law of disappearing can be written as relaxation equation for each internal variable
      
为了描述热力学系统与平衡之间的偏差,除了如上所述的用于固定平衡状态的本构变量<math>x_1, x_2, ..., x_n</math>外,还引入了一组称为内部变量的变量<math>\xi_1, \xi_2,\ldots</math>。平衡状态被认为是稳定的,内部变量的主要性质(作为系统的非平衡度量)趋于消失;消失的局部定律可以写成每个内部变量的弛豫方程
 
为了描述热力学系统与平衡之间的偏差,除了如上所述的用于固定平衡状态的本构变量<math>x_1, x_2, ..., x_n</math>外,还引入了一组称为内部变量的变量<math>\xi_1, \xi_2,\ldots</math>。平衡状态被认为是稳定的,内部变量的主要性质(作为系统的非平衡度量)趋于消失;消失的局部定律可以写成每个内部变量的弛豫方程
      
{{NumBlk|:|<math>
 
{{NumBlk|:|<math>
第244行: 第156行:  
</math>|{{EquationRef|1}}}}
 
</math>|{{EquationRef|1}}}}
    +
其中<math> \tau_i= \tau_i(T, x_1, x_2, \ldots, x_n)</math>是相应变量的弛豫时间。出于方便考虑初始值<math> \xi_i^0</math>等于零。上面的方程对于偏离平衡态的小偏差是有效的;通常情况下,内部变量的动力学可以按照Pokrovskii的方法考虑<ref name="dx.doi.org">Pokrovskii V.N. (2013) A derivation of the main relations of non-equilibrium thermodynamics. Hindawi Publishing Corporation: ISRN Thermodynamics, vol. 2013, article ID 906136, 9 p.  https://dx.doi.org/10.1155/2013/906136.</ref>。
   −
where <math> \tau_i= \tau_i(T, x_1, x_2, \ldots, x_n)</math> is a relaxation time of a corresponding variables. It is convenient to consider the initial value <math> \xi_i^0</math> are equal to zero. The above equation is valid for small deviations from equilibrium; The dynamics of internal variables in general case is considered by Pokrovskii.<ref name="dx.doi.org">Pokrovskii V.N. (2013) A derivation of the main relations of non-equilibrium thermodynamics. Hindawi Publishing Corporation: ISRN Thermodynamics, vol. 2013, article ID 906136, 9 p.  https://dx.doi.org/10.1155/2013/906136.</ref>
     −
其中<math> \tau_i= \tau_i(T, x_1, x_2, \ldots, x_n)</math>是相应变量的弛豫时间。出于方便考虑初始值<math> \xi_i^0</math>等于零。上面的方程对于偏离平衡态的小偏差是有效的;通常情况下,内部变量的动力学可以按照Pokrovskii的方法考虑。
+
系统在非平衡状态下的熵相当于变量总数的函数{{NumBlk|:|<math>
 
  −
 
  −
 
  −
Entropy of the system in non-equilibrium is a function of the total set of variables
  −
系统在非平衡状态下的熵相当于变量总数的函数
  −
 
  −
 
  −
{{NumBlk|:|<math>
   
S=S(T, x_1, x_2, , x_n; \xi_1, \xi_2,  \ldots)  
 
S=S(T, x_1, x_2, , x_n; \xi_1, \xi_2,  \ldots)  
</math>|{{EquationRef|1}}}}
+
</math>|{{EquationRef|1}}}}  
 
  −
 
  −
The essential contribution to the thermodynamics of the [[non-equilibrium systems]] was brought by [[Prigogine]], when he and his collaborators investigated the systems of chemically reacting substances. The stationary states of such systems exists due to exchange both particles and energy with the environment. In section 8 of the third chapter of his book,<ref>[[Ilya Prigogine|Prigogine, I.]] (1955/1961/1967). ''Introduction to Thermodynamics of Irreversible Processes''. 3rd edition, Wiley Interscience, New York.</ref> Prigogine has specified three contributions to the variation of entropy of the considered system at the given volume and constant temperature <math> T</math> . The increment of [[entropy]] <math> S</math> can be calculated according to the formula
  −
 
  −
普利高因Prigogine在他和他的合作者研究化学反应物质的系统时,对非平衡系统的热力学做出了重要贡献。由于与环境交换粒子和能量,因此是存在这种稳态的系统。在他的书的第三章第8节中,Prigogine指定了在给定体积和恒定温度<math> T</math>下所考虑的系统熵变化的三个贡献。可以根据以下公式计算熵的增量S
      +
普利高津在他和他的合作者研究化学反应物质的系统时,对非平衡系统的热力学做出了重要贡献。由于与环境交换粒子和能量,因此是存在这种稳态的系统。在他的书的第三章第8节中<ref>[[Ilya Prigogine|Prigogine, I.]] (1955/1961/1967). ''Introduction to Thermodynamics of Irreversible Processes''. 3rd edition, Wiley Interscience, New York.</ref> ,普利高津指定了在给定体积和恒定温度<math> T</math>下所考虑的系统熵变化的三个贡献。可以根据以下公式计算熵的增量S
    
{{NumBlk|:|<math>
 
{{NumBlk|:|<math>
第269行: 第169行:  
</math>|{{EquationRef|1}}}}
 
</math>|{{EquationRef|1}}}}
   −
 
+
等式右边的第一项表示进入系统的热能流。最后一项是进入系统的能量流与可能为正或负的物质粒子流<math> \Delta N_\alpha </math>一起出现,<math> \mu_\alpha</math>为物质<math> \alpha</math>的'''<font color="#ff8000"> 化学势Chemical potential</font>'''。(1)中的中间项描述了由于内部变量<math> \xi_j</math>的松弛而导致的'''<font color="#ff8000"> 能量耗散Energy dissipation</font>'''(熵产生)。就化学反应物质而言(由Prigogine调查),内部变量似乎是化学反应不完整的量度,即所考虑的具有化学反应的系统失衡程度。该理论可以推广为,与平衡状态的任何偏差视为内部变量<ref>Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach,  Eur. J. Phys.  vol. 26,  769-781.</ref><ref name="dx.doi.org" />,因此我们认为方程式(1)中的内部变量<math> \xi_j</math>不仅由定义系统中发生的所有化学反应的完成度量组成,而且还有系统的结构,温度梯度,物质浓度的差异等等组成。
The first term on the right hand side of the equation presents a stream of thermal energy into the system; the last term—a stream of energy into the system coming with the stream of particles of substances <math> \Delta N_\alpha </math> that can be positive or negative, <math> \mu_\alpha</math> is [[chemical potential]] of substance <math> \alpha</math>. The middle term in (1) depicts [[energy dissipation]] ([[entropy production]]) due to the relaxation of internal variables <math> \xi_j</math>. In the case of chemically reacting substances, which was investigated by Prigogine, the internal variables appear to be measures of incompleteness of chemical reactions, that is measures of how much the considered system with chemical reactions is out of equilibrium. The theory can be generalised,<ref>Pokrovskii V.N. (2005) Extended thermodynamics in a discrete-system approach,  Eur. J. Phys.  vol. 26,  769-781.</ref><ref name="dx.doi.org"/> to consider any deviation from the equilibrium state as an internal variable, so that we consider the set of internal variables <math> \xi_j</math> in equation (1) to consist of the quantities defining not only degrees of completeness of all chemical reactions occurring in the system, but also the structure of the system, gradients of temperature, difference of concentrations of substances and so on.
  −
 
  −
等式右边的第一项表示进入系统的热能流。最后一项是进入系统的能量流与可能为正或负的物质粒子流<math> \Delta N_\alpha </math>一起出现,<math> \mu_\alpha</math>为物质<math> \alpha</math>的'''<font color="#ff8000"> 化学势Chemical potential</font>'''。(1)中的中间项描述了由于内部变量<math> \xi_j</math>的松弛而导致的'''<font color="#ff8000"> 能量耗散Energy dissipation</font>'''(熵产生)。就化学反应物质而言(由Prigogine调查),内部变量似乎是化学反应不完整的量度,即所考虑的具有化学反应的系统失衡程度。该理论可以推广为,与平衡状态的任何偏差视为内部变量,因此我们认为方程式(1)中的内部变量<math> \xi_j</math>不仅由定义系统中发生的所有化学反应的完成度量组成,而且还有系统的结构,温度梯度,物质浓度的差异等等组成。
      
== Flows and forces 流量与力 ==
 
== Flows and forces 流量与力 ==
   −
The fundamental relation of classical equilibrium thermodynamics <ref name="W. Greiner et. al. 1997">W. Greiner, L. Neise, and H. Stöcker (1997), ''Thermodynamics and Statistical Mechanics (Classical Theoretical Physics)'' ,Springer-Verlag, New York, '''P85, 91, 101,108,116''', {{ISBN|0-387-94299-8}}.</ref>
  −
  −
经典平衡热力学的基本关系:
      +
经典平衡热力学的基本关系<ref name="W. Greiner et. al. 1997">W. Greiner, L. Neise, and H. Stöcker (1997), ''Thermodynamics and Statistical Mechanics (Classical Theoretical Physics)'' ,Springer-Verlag, New York, '''P85, 91, 101,108,116''', {{ISBN|0-387-94299-8}}.</ref>:
    
: <math>dS=\frac{1}{T}dU+\frac{p}{T}dV-\sum_{i=1}^s\frac{\mu_i}{T}dN_i</math>
 
: <math>dS=\frac{1}{T}dU+\frac{p}{T}dV-\sum_{i=1}^s\frac{\mu_i}{T}dN_i</math>
  −
  −
expresses the change in [[entropy]] <math>dS</math> of a system as a function of the intensive quantities [[temperature]] <math>T</math>, [[pressure]] <math>p</math> and <math>i^{th}</math> [[chemical potential]] <math>\mu_i</math> and of the differentials of the extensive quantities [[energy]] <math>U</math>, [[Volume (thermodynamics)|volume]] <math>V</math> and <math>i^{th}</math> [[particle number]] <math>N_i</math>.
      
其中:表示系统的熵<math>dS</math>随强度温度<math>T</math>,压力<math>p</math>和第<math>i^{th}</math>个化学势<math>\mu_i</math>以及大量能量<math>U</math>,体积<math>V</math>和第<math>i^{th}</math>个粒子数<math>N_i</math>的微分而变化。
 
其中:表示系统的熵<math>dS</math>随强度温度<math>T</math>,压力<math>p</math>和第<math>i^{th}</math>个化学势<math>\mu_i</math>以及大量能量<math>U</math>,体积<math>V</math>和第<math>i^{th}</math>个粒子数<math>N_i</math>的微分而变化。
   −
 
+
继昂萨格之后,我们需要考虑将范围扩展到热力学非平衡系统<ref name="Onsager 1931 I"/> 。我们需要将局部定义的广延宏观量math>U<nowiki></math></nowiki>, <math>V</math> 和 <math>N_i</math>,以及强度宏观量<math>T</math>, <math>p</math> 和 <math>\mu_i</math>的形式作为基础。
 
  −
Following Onsager (1931,I),<ref name="Onsager 1931 I"/> let us extend our considerations to thermodynamically non-equilibrium systems. As a basis, we need locally defined versions of the extensive macroscopic quantities <math>U</math>, <math>V</math> and <math>N_i</math> and of the intensive macroscopic quantities <math>T</math>, <math>p</math> and <math>\mu_i</math>.
  −
 
  −
继Onsager(1931,I)之后,我们需要考虑将范围扩展到热力学非平衡系统。我们需要将局部定义的广延宏观量math>U</math>, <math>V</math> 和 <math>N_i</math>,以及强度宏观量<math>T</math>, <math>p</math> 和 <math>\mu_i</math>的形式作为基础。
  −
 
  −
 
  −
 
  −
For classical non-equilibrium studies, we will consider some new locally defined intensive macroscopic variables. We can, under suitable conditions, derive these new variables by locally defining the gradients and flux densities of the basic locally defined macroscopic quantities.
      
对于经典的非平衡研究,我们将考虑一些新的局部定义的广延宏观变量。我们可以在合适的条件下,通过局部定义梯度和基本局部定义的宏观量通量密度来导出这些新变量。
 
对于经典的非平衡研究,我们将考虑一些新的局部定义的广延宏观变量。我们可以在合适的条件下,通过局部定义梯度和基本局部定义的宏观量通量密度来导出这些新变量。
  −
  −
  −
Such locally defined gradients of intensive macroscopic variables are called 'thermodynamic forces'. They 'drive' flux densities, perhaps misleadingly often called 'fluxes', which are dual to the forces. These quantities are defined in the article on [[Onsager reciprocal relations]].
      
这样的局部宏观强度变量的梯度被称为“热力学力”。它们的“驱动”通量密度,可能被误导为“通量”,这对力是双重的。这些数量在关于'''<font color="#ff8000"> 昂萨格倒易关系Onsager reciprocal relations</font>'''的文章中有所定义。
 
这样的局部宏观强度变量的梯度被称为“热力学力”。它们的“驱动”通量密度,可能被误导为“通量”,这对力是双重的。这些数量在关于'''<font color="#ff8000"> 昂萨格倒易关系Onsager reciprocal relations</font>'''的文章中有所定义。
  −
  −
  −
Establishing the relation between such forces and flux densities is a problem in statistical mechanics. Flux densities (<math>J_i</math>) may be coupled. The article on Onsager reciprocal relations considers the stable near-steady thermodynamically non-equilibrium regime, which has dynamics linear in the forces and flux densities.
      
在统计力学中建立这样一个连接力与通量密度之间的关系,是一个问题。因为通量密度(<math>J_i</math>)可以耦合。关于Onsager互惠关系的文章考虑了稳定的近稳态热力学非平衡态,该态在力和通量密度上具有线性关系。
 
在统计力学中建立这样一个连接力与通量密度之间的关系,是一个问题。因为通量密度(<math>J_i</math>)可以耦合。关于Onsager互惠关系的文章考虑了稳定的近稳态热力学非平衡态,该态在力和通量密度上具有线性关系。
   −
 
+
在静止状态下,这种力和相关的通量密度根据定义是时间不变的,系统局部定义的熵和熵的产生率也是如此。值得注意的是,根据普利高津等人的说法,当开放系统处于允许其达到稳定的静态热力学非平衡状态条件下,它会自我组织,以使局部定义的总熵最小化。这在下面进一步考虑。
 
  −
In stationary conditions, such forces and associated flux densities are by definition time invariant, as also are the system's locally defined entropy and rate of entropy production. Notably, according to [[Ilya Prigogine]] and others, when an open system is in conditions that allow it to reach a stable stationary thermodynamically non-equilibrium state, it organizes itself so as to minimize total entropy production defined locally. This is considered further below.
  −
 
  −
在静止状态下,这种力和相关的通量密度根据定义是时间不变的,系统局部定义的熵和熵的产生率也是如此。值得注意的是,根据Ilya Prigogine伊利亚·普里戈吉因等人的说法,当开放系统处于允许其达到稳定的静态热力学非平衡状态条件下,它会自我组织,以使局部定义的总熵最小化。这在下面进一步考虑。
  −
 
  −
 
  −
 
  −
One wants to take the analysis to the further stage of describing the behaviour of surface and volume integrals of non-stationary local quantities; these integrals are macroscopic fluxes and production rates. In general the dynamics of these integrals are not adequately described by linear equations, though in special cases they can be so described.
      
有人希望将分析带入到描述非平稳局部量的表面和体积积分行为的下一步阶段。其中这些积分是指宏观通量和生产率。通常这些动力学方程并不能用线性方程式充分描述,但是在特殊情况下仍然是可以的。
 
有人希望将分析带入到描述非平稳局部量的表面和体积积分行为的下一步阶段。其中这些积分是指宏观通量和生产率。通常这些动力学方程并不能用线性方程式充分描述,但是在特殊情况下仍然是可以的。
第328行: 第196行:  
=== Onsager reciprocal relations 昂萨格倒易关系 ===
 
=== Onsager reciprocal relations 昂萨格倒易关系 ===
   −
{{Main|Onsager reciprocal relations}}
+
根据Rayleigh(1873)<ref name="Rayleigh 1873"/> 的文章《Some General Theorems relating to Vibrations》第三节,Onsager(1931)<ref name="Onsager 1931 I"/> 的文章《Reciprocal Relations in Irreversible Processes. I.》,在流量(<math>J_i</math>)都较小且热力学力(<math>F_i</math>)缓慢变化的状态下,熵的产生速率(<math>(\sigma)</math>)为与流量线性相关:
 
  −
Following Section III of Rayleigh (1873),<ref name="Rayleigh 1873"/> Onsager (1931, I)<ref name="Onsager 1931 I"/> showed that in the regime where both the flows (<math>J_i</math>) are small and the thermodynamic forces (<math>F_i</math>) vary slowly, the rate of creation of entropy <math>(\sigma)</math> is [[linear relation|linearly related]] to the flows:
  −
 
  −
根据Rayleigh(1873)的文章《Some General Theorems relating to Vibrations》第三节,Onsager(1931,I)的文章《Reciprocal Relations in Irreversible Processes. I.》,在流量(<math>J_i</math>)都较小且热力学力(<math>F_i</math>)缓慢变化的状态下,熵的产生速率(<math>(\sigma)</math>)为与流量线性相关:
   
:<math>\sigma =  \sum_i J_i\frac{\partial F_i}{\partial x_i} </math>
 
:<math>\sigma =  \sum_i J_i\frac{\partial F_i}{\partial x_i} </math>
 
+
:
 
+
流量与力的梯度有关,由通常表示为<math>L</math>的系数矩阵参数化:
 
  −
and the flows are related to the gradient of the forces, parametrized by a [[matrix (mathematics)|matrix]] of coefficients conventionally denoted <math>L</math>:
  −
 
  −
流量与力的梯度有关,由通常表示为<math>L</math>的系数矩阵参数化
  −
 
      
:<math>J_i =  \sum_{j} L_{ij} \frac{\partial F_j}{\partial x_j} </math>
 
:<math>J_i =  \sum_{j} L_{ij} \frac{\partial F_j}{\partial x_j} </math>
第346行: 第205行:     
从中得出:
 
从中得出:
  −
   
:<math>\sigma =  \sum_{i,j} L_{ij} \frac{\partial F_i}{\partial x_i}\frac{\partial F_j}{\partial x_j} </math>
 
:<math>\sigma =  \sum_{i,j} L_{ij} \frac{\partial F_i}{\partial x_i}\frac{\partial F_j}{\partial x_j} </math>
  −
  −
The [[second law of thermodynamics]] requires that the matrix <math>L</math> be [[Positive-definite matrix|positive definite]]. [[Statistical mechanics]] considerations involving microscopic reversibility of dynamics imply that the matrix <math>L</math> is [[symmetric matrix|symmetric]]. This fact is called the ''Onsager reciprocal relations''.
      
热力学第二定律要求矩阵<math>L</math>为'''<font color="#ff8000"> 正定Positive definite</font>'''。涉及动力学的微观可逆性的统计力学考虑意味着矩阵<math>L</math>是对称的。关于动力学的微观可逆性,涉及到统计力学考虑因素认为矩阵<math>L</math>是对称的。这个事实称为昂萨格倒易关系。
 
热力学第二定律要求矩阵<math>L</math>为'''<font color="#ff8000"> 正定Positive definite</font>'''。涉及动力学的微观可逆性的统计力学考虑意味着矩阵<math>L</math>是对称的。关于动力学的微观可逆性,涉及到统计力学考虑因素认为矩阵<math>L</math>是对称的。这个事实称为昂萨格倒易关系。
   −
 
+
Pokrovskii给出了上述熵产生速率方程的广义概括<ref name="dx.doi.org" />
 
  −
The generalization of the above equations for the rate of creation of entropy was given by Pokrovskii.<ref name="dx.doi.org"/>
  −
 
  −
Pokrovskii给出了上述熵产生速率方程的广义概括。
      
== Speculated extremal principles for non-equilibrium processes 非平衡过程的推测极值原理 ==
 
== Speculated extremal principles for non-equilibrium processes 非平衡过程的推测极值原理 ==
{{main|Extremal principles in non-equilibrium thermodynamics}}
+
即使发展到现在,其相关领域中,具有运用价值的极值理论仍然很模糊。Nicolis尼科利斯(1999)<ref>{{Cite journal | doi = 10.1002/qj.49712555718 | last1 = Nicolis | first1 = C. | year = 1999 | title = Entropy production and dynamical complexity in a low-order atmospheric model | journal = Quarterly Journal of the Royal Meteorological Society | volume = 125 | issue = 557| pages = 1859–1878 |bibcode = 1999QJRMS.125.1859N }}</ref>总结认为,一种大气动力学模型具有一个吸引子,并且该吸引子不处于最大或最小耗散状态。她说,这似乎排除了全局组织原则的存在,并评论说这个结论在某种程度上令人失望;她还指出了寻找熵产生的热力学通用形式相当困难。另一位顶级专家则广泛讨论了熵的产生和能量耗散的极值原理:格兰迪Grandy(2008)<ref name="Grandy 2008"/>在他的文章第12节(待确定)非常谨慎地提出,在许多情况下,很难定义“内部熵产生的速率”,并且发现有时为了预测过程,将数量的极值称为速率能量耗散极值可能比熵产生速率极值有用。这个数量曾经出现在Onsager于1931年提出相关论点中。同时其他作者也感到,广义的全局极值原理前景不太明朗。这类作家包括Glansdorff和Prigogine(1971),Lebon,Jou和Casas-Vásquez(2008)和Šilhavý(1997)。
 
  −
Until recently, prospects for useful extremal principles in this area have seemed clouded. Nicolis (1999)<ref>{{Cite journal | doi = 10.1002/qj.49712555718 | last1 = Nicolis | first1 = C. | year = 1999 | title = Entropy production and dynamical complexity in a low-order atmospheric model | journal = Quarterly Journal of the Royal Meteorological Society | volume = 125 | issue = 557| pages = 1859–1878 |bibcode = 1999QJRMS.125.1859N }}</ref> concludes that one model of atmospheric dynamics has an attractor which is not a regime of maximum or minimum dissipation; she says this seems to rule out the existence of a global organizing principle, and comments that this is to some extent disappointing; she also points to the difficulty of finding a thermodynamically consistent form of entropy production. Another top expert offers an extensive discussion of the possibilities for principles of extrema of entropy production and of dissipation of energy: Chapter 12 of Grandy (2008)<ref name="Grandy 2008"/> is very cautious, and finds difficulty in defining the 'rate of internal entropy production' in many cases, and finds that sometimes for the prediction of the course of a process, an extremum of the quantity called the rate of dissipation of energy may be more useful than that of the rate of entropy production; this quantity appeared in Onsager's 1931<ref name="Onsager 1931 I"/> origination of this subject. Other writers have also felt that prospects for general global extremal principles are clouded. Such writers include Glansdorff and Prigogine (1971), Lebon, Jou and Casas-Vásquez (2008), and Šilhavý (1997).
  −
 
  −
即使发展到现在,其相关领域中,具有运用价值的极值理论仍然很模糊。Nicolis尼科利斯(1999)总结认为,一种大气动力学模型具有一个吸引子,并且该吸引子不处于最大或最小耗散状态。她说,这似乎排除了全局组织原则的存在,并评论说这个结论在某种程度上令人失望;她还指出了寻找熵产生的热力学通用形式相当困难。另一位顶级专家则广泛讨论了熵的产生和能量耗散的极值原理:格兰迪Grandy(2008)在他的文章第12节(待确定)非常谨慎地提出,在许多情况下,很难定义“内部熵产生的速率”,并且发现有时为了预测过程,将数量的极值称为速率能量耗散极值可能比熵产生速率极值有用。这个数量曾经出现在Onsager于1931年提出相关论点中。同时其他作者也感到,广义的全局极值原理前景不太明朗。这类作家包括Glansdorff和Prigogine(1971),Lebon,Jou和Casas-Vásquez(2008)和Šilhavý(1997)。
  −
 
  −
 
  −
 
  −
There is good experimental evidence that heat convection does not obey extremal principles for time rate of entropy production.<ref name="Attard 2012">{{cite arXiv|last=Attard|first=P.|title=Optimising Principle for Non-Equilibrium Phase Transitions and Pattern Formation with Results for Heat Convection|year=2012|eprint=1208.5105|class=cond-mat.stat-mech}}</ref> Theoretical analysis shows that chemical reactions do not obey extremal principles for the second differential of time rate of entropy production.<ref name="Keizer 1974">{{cite journal |last1=Keizer |first1=J. |last2=Fox |first2=R. |date=January 1974 |title=Qualms Regarding the Range of Validity of the Glansdorff-Prigogine Criterion for Stability of Non-Equilibrium States |journal=PNAS |volume=71 |pages=192–196 |doi=10.1073/pnas.71.1.192|pmid=16592132 }}</ref> The development of a general extremal principle seems infeasible in the current state of knowledge.
     −
有充分的实验证据表明,热对流不符合熵产生时间速率的极值原理。理论分析表明,化学反应没有遵循熵产生时间速率的二次微分极值原理,以目前的知识体系,一般性极值原理的发展似乎是不可行的。
+
有充分的实验证据表明,热对流不符合熵产生时间速率的极值原理<ref name="Attard 2012">{{cite arXiv|last=Attard|first=P.|title=Optimising Principle for Non-Equilibrium Phase Transitions and Pattern Formation with Results for Heat Convection|year=2012|eprint=1208.5105|class=cond-mat.stat-mech}}</ref>。理论分析表明,化学反应没有遵循熵产生时间速率的二次微分极值原理<ref name="Keizer 1974">{{cite journal |last1=Keizer |first1=J. |last2=Fox |first2=R. |date=January 1974 |title=Qualms Regarding the Range of Validity of the Glansdorff-Prigogine Criterion for Stability of Non-Equilibrium States |journal=PNAS |volume=71 |pages=192–196 |doi=10.1073/pnas.71.1.192|pmid=16592132 }}</ref>,以目前的知识体系,一般性极值原理的发展似乎是不可行的。
    
== Applications 应用 ==
 
== Applications 应用 ==
   −
Non-equilibrium thermodynamics has been successfully applied to describe biological processes such as [[protein folding]]/unfolding and [[membrane transport|transport through membranes]].<ref>{{cite journal |last1=Kimizuka |first1=Hideo |last2=Kaibara |first2=Kozue |title=Nonequilibrium thermodynamics of ion transport through membranes |journal=Journal of Colloid and Interface Science |date=September 1975 |volume=52 |issue=3 |pages=516–525 |doi=10.1016/0021-9797(75)90276-3}}</ref><ref>{{cite journal |last1=Baranowski |first1=B. |title=Non-equilibrium thermodynamics as applied to membrane transport |journal=Journal of Membrane Science |date=April 1991 |volume=57 |issue=2–3 |pages=119–159 |doi=10.1016/S0376-7388(00)80675-4}}</ref>
+
非平衡热力学已成功应用于生物学中,类似描述生物过程,例如蛋白质折叠/展开和通过膜的运输<ref>{{cite journal |last1=Kimizuka |first1=Hideo |last2=Kaibara |first2=Kozue |title=Nonequilibrium thermodynamics of ion transport through membranes |journal=Journal of Colloid and Interface Science |date=September 1975 |volume=52 |issue=3 |pages=516–525 |doi=10.1016/0021-9797(75)90276-3}}</ref><ref>{{cite journal |last1=Baranowski |first1=B. |title=Non-equilibrium thermodynamics as applied to membrane transport |journal=Journal of Membrane Science |date=April 1991 |volume=57 |issue=2–3 |pages=119–159 |doi=10.1016/S0376-7388(00)80675-4}}</ref>
 
  −
非平衡热力学已成功应用于生物学中,类似描述生物过程,例如蛋白质折叠/展开和通过膜的运输。
  −
 
  −
 
  −
 
  −
It is also used to give a description of the dynamics of nanoparticles, which can be out of equilibrium in systems where catalysis and electrochemical conversion is involved.<ref>{{cite journal |last1=Bazant |first1=Martin Z. |title=Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics |journal=Accounts of Chemical Research |date=22 March 2013 |volume=46 |issue=5 |pages=1144–1160 |doi=10.1021/ar300145c|pmid=23520980 |arxiv=1208.1587 |s2cid=10827167 }}</ref>
  −
 
  −
它也可用于描述纳米粒子的动力学,在涉及催化和电化学转化的系统中,纳米粒子的动力学可能不平衡。
  −
 
  −
 
     −
Also, ideas from non-equilibrium thermodynamics and the informatic theory of entropy have been adapted to describe general economic systems.<ref>{{Cite book|title = Econodynamics. The Theory of Social Production.|last = Pokrovskii|first = Vladimir|publisher = Springer, Dordrecht-Heidelberg-London-New York.|year = 2011|location = https://www.springer.com/physics/complexity/book/978-94-007-2095-4}}</ref>
+
它也可用于描述纳米粒子的动力学,在涉及催化和电化学转化的系统中,纳米粒子的动力学可能不平衡<ref>{{cite journal |last1=Bazant |first1=Martin Z. |title=Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics |journal=Accounts of Chemical Research |date=22 March 2013 |volume=46 |issue=5 |pages=1144–1160 |doi=10.1021/ar300145c|pmid=23520980 |arxiv=1208.1587 |s2cid=10827167 }}</ref>
<ref>{{Cite book|title = The Unity of Science and Economics: A New Foundation of Economic Theory|last = Chen|first = Jing|publisher = Springer|year = 2015|location = https://www.springer.com/us/book/9781493934645}}</ref>
     −
同时,关于非平衡热力学和信息熵理论的思想,已经被用来描述一般的经济系统。
+
同时,关于非平衡热力学和信息熵理论的思想,已经被用来描述一般的经济系统<ref>{{Cite book|title = Econodynamics. The Theory of Social Production.|last = Pokrovskii|first = Vladimir|publisher = Springer, Dordrecht-Heidelberg-London-New York.|year = 2011|location = https://www.springer.com/physics/complexity/book/978-94-007-2095-4}}</ref><ref>{{Cite book|title = The Unity of Science and Economics: A New Foundation of Economic Theory|last = Chen|first = Jing|publisher = Springer|year = 2015|location = https://www.springer.com/us/book/9781493934645}}</ref>。
    
== See also 其他参考资料 ==
 
== See also 其他参考资料 ==
65

个编辑

导航菜单