第118行: |
第118行: |
| | | |
| ==Dual use (military applications)== | | ==Dual use (military applications)== |
− | ==军民两用技术== | + | ==军民两用技术(军事应用)== |
| The [[Joint Artificial Intelligence Center]], a branch of the U.S. military, is a center dedicated to the procurement and implementation of AI software and neuromorphic hardware for combat use. Specific applications include smart headsets/goggles and robots. JAIC intends to rely heavily on neuromorphic technology to connect "every fighter every shooter" within a network of neuromorphic-enabled units. | | The [[Joint Artificial Intelligence Center]], a branch of the U.S. military, is a center dedicated to the procurement and implementation of AI software and neuromorphic hardware for combat use. Specific applications include smart headsets/goggles and robots. JAIC intends to rely heavily on neuromorphic technology to connect "every fighter every shooter" within a network of neuromorphic-enabled units. |
| | | |
− | The Joint Artificial Intelligence Center, a branch of the U.S. military, is a center dedicated to the procurement and implementation of AI software and neuromorphic hardware for combat use. Specific applications include smart headsets/goggles and robots. JAIC intends to rely heavily on neuromorphic technology to connect "every fighter every shooter" within a network of neuromorphic-enabled units.
| + | '''<font color="#ff8000">联合人工智能中心The Joint Artificial Intelligence Center</font>'''(JAIC),是美国军队的一个分支,专门从事采购和实施用于战斗的人工智能软件和神经形态硬件。具体应用包括智能耳机/护目镜和机器人。JAIC打算高度依赖神经形态技术,'''<font color="#32CD32">使用神经形态技术来连接神经形态单位网络中的“每个战士每个射手”</font>'''。 |
| | | |
− | 军民两用联合人工智能中心是美国军队的一个分支,专门从事采购和实施用于战斗的人工智能软件和神经形态硬件。具体应用包括智能耳机/护目镜和机器人。JAIC 打算严重依赖神经形态技术来连接神经形态单位网络中的“每个战士每个射手”。
| |
| | | |
| ==Legal considerations== | | ==Legal considerations== |
− | == 法律问题== | + | ==法律问题== |
| Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref> | | Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref> |
| | | |
第134行: |
第133行: |
| | | |
| ===Ownership and property rights=== | | ===Ownership and property rights=== |
− | ===所有权及财产权问题 === | + | ===所有权及财产权问题=== |
| There is significant legal debate around property rights and artificial intelligence. In ''Acohs Pty Ltd v. Ucorp Pty Ltd'', Justice Christopher Jessup of the [[Federal Court of Australia]] found that the [[source code]] for [[Material safety data sheets|Material Safety Data Sheets]] could not be [[Copyright law of Australia|copyrighted]] as it was generated by a [[software interface]] rather than a human author.<ref>{{Cite web|url=http://www.lavan.com.au/advice/intellectual_property_technology/copyright_in_source_code_and_digital_products|title=Copyright in source code and digital products|last=Lavan|website=Lavan|language=en|access-date=2019-05-10}}</ref> The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?<ref>{{cite journal |last1=Eshraghian|first1=Jason K. |title=Human Ownership of Artificial Creativity |journal=Nature Machine Intelligence |date=9 March 2020 |volume=2 |pages=157–160 |doi=10.1038/s42256-020-0161-x}}</ref> | | There is significant legal debate around property rights and artificial intelligence. In ''Acohs Pty Ltd v. Ucorp Pty Ltd'', Justice Christopher Jessup of the [[Federal Court of Australia]] found that the [[source code]] for [[Material safety data sheets|Material Safety Data Sheets]] could not be [[Copyright law of Australia|copyrighted]] as it was generated by a [[software interface]] rather than a human author.<ref>{{Cite web|url=http://www.lavan.com.au/advice/intellectual_property_technology/copyright_in_source_code_and_digital_products|title=Copyright in source code and digital products|last=Lavan|website=Lavan|language=en|access-date=2019-05-10}}</ref> The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?<ref>{{cite journal |last1=Eshraghian|first1=Jason K. |title=Human Ownership of Artificial Creativity |journal=Nature Machine Intelligence |date=9 March 2020 |volume=2 |pages=157–160 |doi=10.1038/s42256-020-0161-x}}</ref> |
| | | |
第142行: |
第141行: |
| | | |
| ==Neuromemristive systems== | | ==Neuromemristive systems== |
− | ==神经记忆电阻系统== | + | ==神经记忆电阻系统 == |
| Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref> | | Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref> |
| | | |
第197行: |
第196行: |
| {{Portal bar|Electronics}} | | {{Portal bar|Electronics}} |
| | | |
− | ==References== | + | == References== |
| {{Reflist|40em}} | | {{Reflist|40em}} |
| | | |
第229行: |
第228行: |
| *INE news site. | | *INE news site. |
| *Frontiers in Neuromorphic Engineering Journal | | *Frontiers in Neuromorphic Engineering Journal |
− | * Computation and Neural Systems department at the California Institute of Technology. | + | *Computation and Neural Systems department at the California Institute of Technology. |
| *Human Brain Project official site | | *Human Brain Project official site |
| *Building a Silicon Brain: Computer chips based on biological neurons may help simulate larger and more-complex brain models. May 1, 2019. SANDEEP RAVINDRAN | | *Building a Silicon Brain: Computer chips based on biological neurons may help simulate larger and more-complex brain models. May 1, 2019. SANDEEP RAVINDRAN |