更改

跳到导航 跳到搜索
删除1,321字节 、 2022年4月28日 (四) 18:35
第102行: 第102行:  
===Democratic concerns===
 
===Democratic concerns===
 
===公众担忧===
 
===公众担忧===
Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref>{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030|author=2015 Study Panel|date=September 2016|work=One Hundred Year Study on Artificial Intelligence (AI100)|publisher=Stanford University}}</ref> Special [[Eurobarometer]] 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of [[European Union]] citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably “human.” The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.<ref name=":1">{{Cite web|url=http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf|title=Special Eurobarometer 382: Public Attitudes Towards Robots|last=European Commission|date=September 2012|website=European Commission}}</ref>
+
Significant ethical limitations may be placed on neuromorphic engineering due to public perception.<ref name=":27">{{Cite report|url=https://ai100.stanford.edu/sites/g/files/sbiybj9861/f/ai_100_report_0831fnl.pdf|title=Artificial Intelligence and Life in 2030|author=2015 Study Panel|date=September 2016|work=One Hundred Year Study on Artificial Intelligence (AI100)|publisher=Stanford University}}</ref> Special [[Eurobarometer]] 382: Public Attitudes Towards Robots, a survey conducted by the European Commission, found that 60% of [[European Union]] citizens wanted a ban of robots in the care of children, the elderly, or the disabled. Furthermore, 34% were in favor of a ban on robots in education, 27% in healthcare, and 20% in leisure. The European Commission classifies these areas as notably “human.” The report cites increased public concern with robots that are able to mimic or replicate human functions. Neuromorphic engineering, by definition, is designed to replicate the function of the human brain.<ref name=":1">{{Cite web|url=http://ec.europa.eu/commfrontoffice/publicopinion/archives/ebs/ebs_382_en.pdf|title=Special Eurobarometer 382: Public Attitudes Towards Robots|last=European Commission|date=September 2012|website=European Commission}}</ref>
   −
由于公众认知的相关忧虑,神经形态工程学可能会受到严重的伦理限制。欧盟委员会进行的一项调查发现,60% 的欧盟公民希望禁止机器人参与照顾儿童、老人或残疾人的工作。此外,34% 的人支持禁止机器人用于教育,27% 的人支持禁止机器人用于医疗保健,20% 的人支持禁止机器人用于休闲。欧盟委员会将以上领域划入“人类”范畴。报告指出,公众越来越关注能够模仿或复制人类功能的机器人。神经形态工程,顾名思义,是为了复制人脑的功能而设计的。
+
由于公众认知的相关忧虑,神经形态工程学可能会受到严重的伦理限制。<ref name=":27" />欧盟委员会进行的一项调查发现,60% 的欧盟公民希望禁止机器人参与照顾儿童、老人或残疾人的工作。此外,34% 的人支持禁止机器人用于教育,27% 的人支持禁止机器人用于医疗保健,20% 的人支持禁止机器人用于休闲。欧盟委员会将以上领域划入“人类”范畴。报告指出,公众越来越关注能够模仿或复制人类功能的机器人。神经形态工程,顾名思义,是为了复制人脑的功能而设计的。<ref name=":1" />
    
The democratic concerns surrounding neuromorphic engineering are likely to become even more profound in the future. The European Commission found that EU citizens between the ages of 15 and 24 are more likely to think of robots as human-like (as opposed to instrument-like) than EU citizens over the age of 55. When presented an image of a robot that had been defined as human-like, 75% of EU citizens aged 15–24 said it corresponded with the idea they had of robots while only 57% of EU citizens over the age of 55 responded the same way. The human-like nature of neuromorphic systems, therefore, could place them in the categories of robots many EU citizens would like to see banned in the future.<ref name=":1" />
 
The democratic concerns surrounding neuromorphic engineering are likely to become even more profound in the future. The European Commission found that EU citizens between the ages of 15 and 24 are more likely to think of robots as human-like (as opposed to instrument-like) than EU citizens over the age of 55. When presented an image of a robot that had been defined as human-like, 75% of EU citizens aged 15–24 said it corresponded with the idea they had of robots while only 57% of EU citizens over the age of 55 responded the same way. The human-like nature of neuromorphic systems, therefore, could place them in the categories of robots many EU citizens would like to see banned in the future.<ref name=":1" />
   −
The democratic concerns surrounding neuromorphic engineering are likely to become even more profound in the future. The European Commission found that EU citizens between the ages of 15 and 24 are more likely to think of robots as human-like (as opposed to instrument-like) than EU citizens over the age of 55. When presented an image of a robot that had been defined as human-like, 75% of EU citizens aged 15–24 said it corresponded with the idea they had of robots while only 57% of EU citizens over the age of 55 responded the same way. The human-like nature of neuromorphic systems, therefore, could place them in the categories of robots many EU citizens would like to see banned in the future.
+
围绕神经形态工程的公众担忧可能在未来变得更加深刻。欧盟委员会发现,相比于55岁以上的欧盟公民,15至24岁的欧盟公民更有可能认为机器人像人(而不是像仪器)。当看到一张“类人”机器人的图片时,年龄在15岁至24岁之间的欧盟公民中有75% 的人表示这符合他们对机器人的想法,而55岁以上的欧盟公民中只有57% 的人有同样的反应。因此,神经形态系统可能因为其类似人类的特性而被归入许多欧盟公民希望在未来禁止使用的机器人类别。<ref name=":1" />
   −
围绕神经形态工程的公众担忧可能在未来变得更加深刻。欧盟委员会发现,15至24岁的欧盟公民比55岁以上的欧盟公民更有可能认为机器人像人(而不是像仪器)。当看到一张被定义为“类人”机器人的图片时,年龄在15岁至24岁之间的欧盟公民中有75% 的人表示,这与他们对机器人的想法相符,而55岁以上的欧盟公民中只有57% 的人有同样的反应。因此,类似人类的神经形态系统,可以把它们归入许多欧盟公民希望在未来禁止使用的机器人类别。
+
=== Personhood===
 
  −
===Personhood===
   
=== 人格问题===
 
=== 人格问题===
As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.<ref>{{Cite journal|last=Aicardi|first=Christine|date=September 2018|title=Accompanying technology development in the Human Brain Project: From foresight to ethics management|journal=Futures|volume=102|pages=114–124|doi=10.1016/j.futures.2018.01.005|doi-access=free}}</ref> If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.<ref>{{Cite journal|last=Lim|first=Daniel|date=2014-06-01|title=Brain simulation and personhood: a concern with the Human Brain Project|journal=Ethics and Information Technology|language=en|volume=16|issue=2|pages=77–89|doi=10.1007/s10676-013-9330-5|s2cid=17415814|issn=1572-8439}}</ref>
+
As neuromorphic systems have become increasingly advanced, some scholars{{who|date=August 2021}} have advocated for granting [[personhood]] rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the [[Human Brain Project]], which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood.<ref name=":28">{{Cite journal|last=Aicardi|first=Christine|date=September 2018|title=Accompanying technology development in the Human Brain Project: From foresight to ethics management|journal=Futures|volume=102|pages=114–124|doi=10.1016/j.futures.2018.01.005|doi-access=free}}</ref> If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.<ref name=":29">{{Cite journal|last=Lim|first=Daniel|date=2014-06-01|title=Brain simulation and personhood: a concern with the Human Brain Project|journal=Ethics and Information Technology|language=en|volume=16|issue=2|pages=77–89|doi=10.1007/s10676-013-9330-5|s2cid=17415814|issn=1572-8439}}</ref>
 
  −
As neuromorphic systems have become increasingly advanced, some scholars have advocated for granting personhood rights to these systems. If the brain is what grants humans their personhood, to what extent does a neuromorphic system have to mimic the human brain to be granted personhood rights? Critics of technology development in the Human Brain Project, which aims to advance brain-inspired computing, have argued that advancement in neuromorphic computing could lead to machine consciousness or personhood. If these systems are to be treated as people, critics argue, then many tasks humans perform using neuromorphic systems, including the act of termination of neuromorphic systems, may be morally impermissible as these acts would violate the autonomy of the neuromorphic systems.
     −
随着神经形态系统的日益发展,一些学者主张赋予这些系统人格权。如果是大脑赋予了人类人格,那么神经形态系统在多大程度上必须模仿人类大脑才能被赋予人格权利?“人脑计划”旨在推进以大脑为灵感的计算机技术发展,该计划的批评者认为,神经形态计算机技术的进步可能导致机器意识或人格的形成。批评家认为,如果这些系统被当作人来对待,那么人类使用神经形态系统执行的许多任务,包括终止神经形态系统的行为,可能在道德上是不允许的,因为这些行为将违反神经形态系统的自主性。
+
随着神经形态系统的日益发展,一些学者主张赋予这些系统'''<font color="ff8000">人格Personhood</font>'''权。如果是大脑赋予了人类人格,那么在多大程度上模仿人类大脑的神经形态系统才能被赋予人格权利?“人类大脑计划”旨在推进以大脑为灵感的计算机技术发展,该计划的批评者认为,神经形态计算机技术的进步可能导致机器意识或人格的形成。<ref name=":28" />这些批评者认为,如果这些系统被当作人来对待,那么人类使用神经形态系统执行任务(包括终止神经形态系统)的行为,在道德上就可能是不被允许的,因为这些行为将违反神经形态系统的自主性。<ref name=":29" />
      −
==Dual use (military applications) ==
+
==Dual use (military applications)==
 
==军民两用技术==
 
==军民两用技术==
 
The [[Joint Artificial Intelligence Center]], a branch of the U.S. military, is a center dedicated to the procurement and implementation of AI software and neuromorphic hardware for combat use. Specific applications include smart headsets/goggles and robots. JAIC intends to rely heavily on neuromorphic technology to connect "every fighter every shooter" within a network of neuromorphic-enabled units.
 
The [[Joint Artificial Intelligence Center]], a branch of the U.S. military, is a center dedicated to the procurement and implementation of AI software and neuromorphic hardware for combat use. Specific applications include smart headsets/goggles and robots. JAIC intends to rely heavily on neuromorphic technology to connect "every fighter every shooter" within a network of neuromorphic-enabled units.
第130行: 第126行:     
==Legal considerations==
 
==Legal considerations==
==法律问题==
+
== 法律问题==
 
Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref>
 
Skeptics have argued that there is no way to apply the electronic personhood, the concept of personhood that would apply to neuromorphic technology, legally. In a letter signed by 285 experts in law, robotics, medicine, and ethics opposing a European Commission proposal to recognize “smart robots” as legal persons, the authors write, “A legal status for a robot can’t derive from the [[Natural person|Natural Person]] model, since the robot would then hold [[human rights]], such as the right to dignity, the right to its integrity, the right to remuneration or the right to citizenship, thus directly confronting the Human rights. This would be in contradiction with the [[Charter of Fundamental Rights of the European Union]] and the [[Convention for the Protection of Human Rights and Fundamental Freedoms]].”<ref>{{Cite web|url=http://www.robotics-openletter.eu/|title=Robotics Openletter {{!}} Open letter to the European Commission|language=fr-FR|access-date=2019-05-10}}</ref>
   第137行: 第133行:  
怀疑论者认为,在法律上没有办法应用电子人格,这个人格概念将适用于神经形态技术。在一封由285名法律、机器人、医学和伦理学专家签名的信中,作者们反对欧盟委员会承认“智能机器人”为法人的提议,他们写道,“机器人的法律地位不能从自然人模型中推导出来,因为机器人将拥有人权,如尊严权、完整权、报酬权或公民权,从而直接面对人权。这将有悖于《欧洲联盟基本权利宪章和《保护人权和基本自由公约》。”
 
怀疑论者认为,在法律上没有办法应用电子人格,这个人格概念将适用于神经形态技术。在一封由285名法律、机器人、医学和伦理学专家签名的信中,作者们反对欧盟委员会承认“智能机器人”为法人的提议,他们写道,“机器人的法律地位不能从自然人模型中推导出来,因为机器人将拥有人权,如尊严权、完整权、报酬权或公民权,从而直接面对人权。这将有悖于《欧洲联盟基本权利宪章和《保护人权和基本自由公约》。”
   −
===Ownership and property rights ===
+
===Ownership and property rights===
===所有权及财产权问题===
+
===所有权及财产权问题 ===
 
There is significant legal debate around property rights and artificial intelligence. In ''Acohs Pty Ltd v. Ucorp Pty Ltd'', Justice Christopher Jessup of the [[Federal Court of Australia]] found that the [[source code]] for [[Material safety data sheets|Material Safety Data Sheets]] could not be [[Copyright law of Australia|copyrighted]] as it was generated by a [[software interface]] rather than a human author.<ref>{{Cite web|url=http://www.lavan.com.au/advice/intellectual_property_technology/copyright_in_source_code_and_digital_products|title=Copyright in source code and digital products|last=Lavan|website=Lavan|language=en|access-date=2019-05-10}}</ref> The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?<ref>{{cite journal |last1=Eshraghian|first1=Jason K. |title=Human Ownership of Artificial Creativity |journal=Nature Machine Intelligence |date=9 March 2020 |volume=2 |pages=157–160  |doi=10.1038/s42256-020-0161-x}}</ref>
 
There is significant legal debate around property rights and artificial intelligence. In ''Acohs Pty Ltd v. Ucorp Pty Ltd'', Justice Christopher Jessup of the [[Federal Court of Australia]] found that the [[source code]] for [[Material safety data sheets|Material Safety Data Sheets]] could not be [[Copyright law of Australia|copyrighted]] as it was generated by a [[software interface]] rather than a human author.<ref>{{Cite web|url=http://www.lavan.com.au/advice/intellectual_property_technology/copyright_in_source_code_and_digital_products|title=Copyright in source code and digital products|last=Lavan|website=Lavan|language=en|access-date=2019-05-10}}</ref> The same question may apply to neuromorphic systems: if a neuromorphic system successfully mimics a human brain and produces a piece of original work, who, if anyone, should be able to claim ownership of the work?<ref>{{cite journal |last1=Eshraghian|first1=Jason K. |title=Human Ownership of Artificial Creativity |journal=Nature Machine Intelligence |date=9 March 2020 |volume=2 |pages=157–160  |doi=10.1038/s42256-020-0161-x}}</ref>
   第146行: 第142行:     
==Neuromemristive systems==
 
==Neuromemristive systems==
== 神经记忆电阻系统==
+
==神经记忆电阻系统==
 
Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref>
 
Neuromemristive systems are a subclass of neuromorphic computing systems that focus on the use of [[memristors]] to implement [[neuroplasticity]]. While neuromorphic engineering focuses on mimicking biological behavior, neuromemristive systems focus on abstraction.<ref>{{Cite web|url=https://digitalops.sandia.gov/Mediasite/Play/a10cf6ceb55d47608bb8326dd00e46611d|title=002.08 N.I.C.E. Workshop 2014: Towards Intelligent Computing with Neuromemristive Circuits and Systems - Feb. 2014|website=digitalops.sandia.gov|access-date=2019-08-26}}</ref> For example, a neuromemristive system may replace the details of a [[Cerebral cortex|cortical]] microcircuit's behavior with an abstract neural network model.<ref>C. Merkel and D. Kudithipudi, "Neuromemristive extreme learning machines for pattern classification," ISVLSI, 2014.</ref>
   第201行: 第197行:  
{{Portal bar|Electronics}}
 
{{Portal bar|Electronics}}
   −
==References ==
+
==References==
 
{{Reflist|40em}}
 
{{Reflist|40em}}
   第229行: 第225行:     
*Telluride Neuromorphic Engineering Workshop
 
*Telluride Neuromorphic Engineering Workshop
* CapoCaccia Cognitive Neuromorphic Engineering Workshop
+
*CapoCaccia Cognitive Neuromorphic Engineering Workshop
* Institute of Neuromorphic Engineering
+
*Institute of Neuromorphic Engineering
 
*INE news site.
 
*INE news site.
* Frontiers in Neuromorphic Engineering Journal
+
*Frontiers in Neuromorphic Engineering Journal
*Computation and Neural Systems department at the California Institute of Technology.
+
* Computation and Neural Systems department at the California Institute of Technology.
 
*Human Brain Project official site
 
*Human Brain Project official site
 
*Building a Silicon Brain: Computer chips based on biological neurons may help simulate larger and more-complex brain models. May 1, 2019. SANDEEP RAVINDRAN
 
*Building a Silicon Brain: Computer chips based on biological neurons may help simulate larger and more-complex brain models. May 1, 2019. SANDEEP RAVINDRAN
43

个编辑

导航菜单