更改

跳到导航 跳到搜索
无编辑摘要
第37行: 第37行:     
态从第i个状态转移到第j个状态的概率。我们也可以等价地用状态转移图来表示。
 
态从第i个状态转移到第j个状态的概率。我们也可以等价地用状态转移图来表示。
[[文件:Markovian.png|alt=马尔科夫状态转移图|边框|342x342px|居中|马尔科夫状态转移图]]
+
[[文件:马尔科夫状态转移图.png|居中|缩略图|马尔科夫状态转移图]]
 
   
目前对因果涌现的讨论大多集中于这种离散状态、离散时间的马尔可夫动力学。
 
目前对因果涌现的讨论大多集中于这种离散状态、离散时间的马尔可夫动力学。
   第65行: 第64行:  
====G-emergence理论====
 
====G-emergence理论====
 
G-emergence理论是Seth于2008年提出的最早对涌现进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性格兰杰因果来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,自回归模型存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰因果的方法来测量。
 
G-emergence理论是Seth于2008年提出的最早对涌现进行定量量化的研究之一<ref name=":4" />,基本思想是用非线性格兰杰因果来量化复杂系统中的弱涌现。具体来说,使用二元自回归模型进行预测,当只存在两个变量A和B时,自回归模型存在两个等式,每个等式对应其中一个变量每个时刻值的构成,每个变量的当前时刻值都是由自身变量和另外一个变量在滞后时间范围内的变量以及残差项构成,残差可以理解为预测误差,残差可以用来衡量格兰杰因果(G-causality)的因果效应程度。B作为A的格兰杰因(G-cause)的程度通过两个残差方差之比的对数来计算,其中一个是在省略B的所有项时A的自回归模型的残差,另一个是全预测模型的残差。此外,作者还定义了G-autonomous,表示一个时间序列的过去值可以帮助预测自身的未来值。G-autonomous的程度可以用类似量化格兰因果的方法来测量。
[[文件:G-emergence.png|G-emergence理论图|alt=G-emergence理论图|边框|居中|546x546像素]]
+
[[文件:G-emergence.png|G-emergence理论图|alt=G-emergence理论图|居中|546x546像素|缩略图]]
 
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。
 
基于上述G-causality中的两个基本概念,可以来判断涌现的发生(这里是基于格兰杰因果的涌现的衡量,记作G-emergence)。如果把A理解为宏观变量,B理解为微观变量。发生涌现的条件包含两个:1)A是关于B的G-autonomous;2)B是A的G-cause。其中G-emergence的程度是通过A的G-autonomous的程度与B的平均G-cause的程度的乘积来计算。
   第74行: 第73行:     
====Hoel的粗粒化方法====
 
====Hoel的粗粒化方法====
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,右图是对该理论框架的一个抽象,其中,横坐标表示时间尺度,纵坐标表示空间尺度。该框架可以看成是一个多层级的系统,存在微观和宏观两种状态。由于微观态往往具有很大的噪音,导致微观动力学的因果性比较弱,所以如果能对微观态进行合适的粗粒化得到噪音更小的宏观态,从而能使得宏观动力学的因果性更强。此外,因果涌现现象的发生意味着,当粗粒化微观状态时,从当前状态传递到下一状态的有效信息量会增加。[[文件:因果涌现理论抽象框架.png|因果涌现理论抽象框架|alt=因果涌现理论抽象框架|边框|居中|368x368像素]]作者借鉴了整合信息的量化方法<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>,提出一种因果效应度量指标有效信息(<math>\left ( EI \right )</math>)来量化一个马尔可夫动力学的因果性强弱,该指标反应一个特定的状态如何有效地影响系统的未来状态,是系统动力学的内禀属性。具体来说,使用干预操作对上一时刻的状态做干预,然后计算干预分布与在干预的情况下经过动力学的下一时刻分布两者之间的互信息作为因果效应的度量指标,<math>\left ( EI \right )</math>的计算公式如下所示:
+
Hoel等<ref name=":0" /><ref name=":1" />最早提出因果涌现理论,右图是对该理论框架的一个抽象,其中,横坐标表示时间尺度,纵坐标表示空间尺度。该框架可以看成是一个多层级的系统,存在微观和宏观两种状态。由于微观态往往具有很大的噪音,导致微观动力学的因果性比较弱,所以如果能对微观态进行合适的粗粒化得到噪音更小的宏观态,从而能使得宏观动力学的因果性更强。此外,因果涌现现象的发生意味着,当粗粒化微观状态时,从当前状态传递到下一状态的有效信息量会增加。[[文件:因果涌现理论抽象框架.png|因果涌现理论抽象框架|alt=因果涌现理论抽象框架|居中|368x368像素|缩略图]]作者借鉴了整合信息的量化方法<ref>Tononi G, Sporns O. Measuring information integration[J]. BMC neuroscience, 2003, 41-20.</ref>,提出一种因果效应度量指标有效信息(<math>\left ( EI \right )</math>)来量化一个马尔可夫动力学的因果性强弱,该指标反应一个特定的状态如何有效地影响系统的未来状态,是系统动力学的内禀属性。具体来说,使用干预操作对上一时刻的状态做干预,然后计算干预分布与在干预的情况下经过动力学的下一时刻分布两者之间的互信息作为因果效应的度量指标,<math>\left ( EI \right )</math>的计算公式如下所示:
    
<math>EI\left(S\right)=MI\left(I_D;E_D\right)=\sum_{i\in I_D}\ p\left(do\left(s_{t-1}=i\right)\right)\sum_{s_t\in E_D}{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}\log_2{\frac{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}{p\left(s_t\right)}}\ </math>
 
<math>EI\left(S\right)=MI\left(I_D;E_D\right)=\sum_{i\in I_D}\ p\left(do\left(s_{t-1}=i\right)\right)\sum_{s_t\in E_D}{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}\log_2{\frac{p\left(s_t\middle|\ d\ o\left(s_{t-1}=i\right)\right)}{p\left(s_t\right)}}\ </math>
第135行: 第134行:     
为了识别系统中的因果涌现,作者提出一种神经信息压缩方法,构建Encoder-Dynamic Learning-Decoder框架,该模型由编码器、动力学学习器以及解码器三个部分构成,用神经网络构建动力学学习器(<math>f </math>),用可逆神经网络(INN)构建编码器(Encoder)和解码器(Decoder)。该模型框架可以看成是一个神经信息压缩器,将包含噪音的微观态压缩成宏观态,丢弃无用的信息,从而使得宏观动力学的因果性更强。NIS方法的模型框架如图所示。
 
为了识别系统中的因果涌现,作者提出一种神经信息压缩方法,构建Encoder-Dynamic Learning-Decoder框架,该模型由编码器、动力学学习器以及解码器三个部分构成,用神经网络构建动力学学习器(<math>f </math>),用可逆神经网络(INN)构建编码器(Encoder)和解码器(Decoder)。该模型框架可以看成是一个神经信息压缩器,将包含噪音的微观态压缩成宏观态,丢弃无用的信息,从而使得宏观动力学的因果性更强。NIS方法的模型框架如图所示。
[[文件:NIS模型框架图.png|居中|480x480像素|替代=NIS模型框架图|NIS模型框架图]]
+
[[文件:NIS模型框架图.png|居中|480x480像素|替代=NIS模型框架图|NIS模型框架图|缩略图]]
      第162行: 第161行:  
===状态空间的因果涌现===
 
===状态空间的因果涌现===
 
下图给出一个含有四个状态的马尔可夫链的状态转移矩阵,其中前三个状态之间等概率转移,最后一个状态是独立的,通过将前三个状态粗粒化成一个状态,可以得到右图确定的宏观系统,即系统的未来状态完全可以由当前状态决定。此时<math>EI(S_M\ )>EI(S_m\ ) </math>,系统发生了因果涌现。
 
下图给出一个含有四个状态的马尔可夫链的状态转移矩阵,其中前三个状态之间等概率转移,最后一个状态是独立的,通过将前三个状态粗粒化成一个状态,可以得到右图确定的宏观系统,即系统的未来状态完全可以由当前状态决定。此时<math>EI(S_M\ )>EI(S_m\ ) </math>,系统发生了因果涌现。
[[文件:马尔科夫状态转移矩阵.png|边框|居中|474x474像素|马尔科夫状态转移矩阵]]
+
[[文件:马尔科夫状态转移矩阵.png|居中|474x474像素|马尔科夫状态转移矩阵|替代=|缩略图]]
    
===离散布尔动力学网络上的因果涌现===
 
===离散布尔动力学网络上的因果涌现===
 
下图展示1个含有4个节点的布尔网络例子,每个节点有0和1两种状态,每个节点与其中两个节点相连,遵循相同的微观动力学机制(a图),因此,一共含有十六个微观状态,可以得到一个<math>16\times16 </math>的状态转移矩阵(c图),然后给定分组方式,如将A和B进行合并,C和D进行合并(b图),同时给定微观状态到宏观状态的映射函数(d图),就可以得到新的宏观动力学机制,根据这个机制就可以得到宏观网络的状态转移矩阵(e图),通过对比发现宏观动力学的有效信息大于微观动力学的有效信息(<math>EI(S_M\ )>EI(S_m\ ) </math>),系统发生了因果涌现。
 
下图展示1个含有4个节点的布尔网络例子,每个节点有0和1两种状态,每个节点与其中两个节点相连,遵循相同的微观动力学机制(a图),因此,一共含有十六个微观状态,可以得到一个<math>16\times16 </math>的状态转移矩阵(c图),然后给定分组方式,如将A和B进行合并,C和D进行合并(b图),同时给定微观状态到宏观状态的映射函数(d图),就可以得到新的宏观动力学机制,根据这个机制就可以得到宏观网络的状态转移矩阵(e图),通过对比发现宏观动力学的有效信息大于微观动力学的有效信息(<math>EI(S_M\ )>EI(S_m\ ) </math>),系统发生了因果涌现。
[[文件:含有4个节点的布尔网络.png|边框|居中|677x677像素|含有4个节点布尔网络的因果涌现|替代=含有4个节点布尔网络的因果涌现]]
+
[[文件:含有4个节点的布尔网络.png|居中|677x677像素|含有4个节点布尔网络的因果涌现|替代=含有4个节点布尔网络的因果涌现|缩略图]]
    
===时域空间上的因果涌现===
 
===时域空间上的因果涌现===
 
除了对空间进行粗粒化,还可以对时间进行粗粒化如下图所示,考虑两阶马尔可夫动力学,输入为两个时刻<math>t-2 </math>和<math>t-1 </math>的状态,输出为<math>t </math>和<math>t+1 </math>的状态,可以通过<math>EI </math>计算二阶微观动力学的有效信息为<math>1.38bits </math>,然后通过对时间状态分组,令<math>\alpha=\left \{ A_t,A_{t+1} \right \} </math>,<math>\beta=\left \{ B_t,B_{t+1} \right \} </math>, 同时采用与离散布尔函数相同的映射函数,可以得到完全确定且非简并的宏观动力学系统,其有效信息为<math>2bits </math>,同样实现“宏观打败微观”的效果。
 
除了对空间进行粗粒化,还可以对时间进行粗粒化如下图所示,考虑两阶马尔可夫动力学,输入为两个时刻<math>t-2 </math>和<math>t-1 </math>的状态,输出为<math>t </math>和<math>t+1 </math>的状态,可以通过<math>EI </math>计算二阶微观动力学的有效信息为<math>1.38bits </math>,然后通过对时间状态分组,令<math>\alpha=\left \{ A_t,A_{t+1} \right \} </math>,<math>\beta=\left \{ B_t,B_{t+1} \right \} </math>, 同时采用与离散布尔函数相同的映射函数,可以得到完全确定且非简并的宏观动力学系统,其有效信息为<math>2bits </math>,同样实现“宏观打败微观”的效果。
[[文件:时间粗粒化.png|边框|居中|382x382像素|时间粗粒化|替代=时间粗粒化]]
+
[[文件:时间粗粒化.png|居中|382x382像素|时间粗粒化|替代=时间粗粒化|缩略图]]
    
===连续空间上的因果涌现===
 
===连续空间上的因果涌现===
第183行: 第182行:  
设定<math>b=2 </math>,<math>c=4 </math>,<math>a\in\left \{ 0.37,0.43 \right \} </math>间隔为0.001,这里只是基于<math>x </math>的时间序列建立状态网络。OPN方法具体操作如下:输入时间序列<math>x=\left\{x_1, x_2, \ldots, x_n\right\} </math>,需要将输入嵌入到一个滞后时间为<math>\tau </math>的<math>D </math>维空间中,
 
设定<math>b=2 </math>,<math>c=4 </math>,<math>a\in\left \{ 0.37,0.43 \right \} </math>间隔为0.001,这里只是基于<math>x </math>的时间序列建立状态网络。OPN方法具体操作如下:输入时间序列<math>x=\left\{x_1, x_2, \ldots, x_n\right\} </math>,需要将输入嵌入到一个滞后时间为<math>\tau </math>的<math>D </math>维空间中,
 
其中<math>v_i=\left\{x_i, x_{i+\tau},\ldots  x_{i+(D-1) \tau}\right\} </math>,需要根据<math>v_i </math>中数值进行降序排序重新编号为<math>s_i=\left\{\pi_1,\pi_2, \cdots \pi_D\right\} </math>, 其中,<math>\pi_j \in\{1,2, \ldots, D\} </math>,节点序列<math>s </math>表示为<math>s=\left\{s_1, s_2, \ldots, s_{n-D+1}\right\} </math>,序列<math>s </math>中不重复的向量构成最终的状态图中的节点,节点<math>i </math>指向节点<math>j </math>的权重表示为<math>s </math>序列中状态<math>s_i </math>后面为状态<math>s_j </math>的次数。对边权进行归一化就可以得到节点间的状态转移概率,然后基于Hoel等人提出网络的有效信息度量方法进行实验,比较系统的确定性、简并性、有效性等指标随着参数<math>a </math>的变化,如下图所示。
 
其中<math>v_i=\left\{x_i, x_{i+\tau},\ldots  x_{i+(D-1) \tau}\right\} </math>,需要根据<math>v_i </math>中数值进行降序排序重新编号为<math>s_i=\left\{\pi_1,\pi_2, \cdots \pi_D\right\} </math>, 其中,<math>\pi_j \in\{1,2, \ldots, D\} </math>,节点序列<math>s </math>表示为<math>s=\left\{s_1, s_2, \ldots, s_{n-D+1}\right\} </math>,序列<math>s </math>中不重复的向量构成最终的状态图中的节点,节点<math>i </math>指向节点<math>j </math>的权重表示为<math>s </math>序列中状态<math>s_i </math>后面为状态<math>s_j </math>的次数。对边权进行归一化就可以得到节点间的状态转移概率,然后基于Hoel等人提出网络的有效信息度量方法进行实验,比较系统的确定性、简并性、有效性等指标随着参数<math>a </math>的变化,如下图所示。
[[文件:指标变化.png|边框|居中|627x627像素|替代=网络的有效信息度量方法|网络的有效信息度量方法]]
+
[[文件:指标变化.png|居中|627x627像素|替代=网络的有效信息度量方法|网络的有效信息度量方法|缩略图]]
 
通过实验比较发现,随着参数<math>a </math>的增大,确定性首先经历了短暂的上升,随后在第一次分叉后立即大幅下降,然后逐渐上升在周期加倍级联开始前达到局部峰值,过了该点,确定性急剧崩溃。一般来说,混沌动力学与较低水平的确定性呈相关关系。此外,简并性和有效信息的曲线变化和确定性曲线变化保持一致。然而,对于因果涌现曲线的变化没有什么有趣现象,它在一个相对恒定的值附近往复振荡,其中存在一个明显的例外,它在周期加倍级联开始时暴跌,如下图所示。
 
通过实验比较发现,随着参数<math>a </math>的增大,确定性首先经历了短暂的上升,随后在第一次分叉后立即大幅下降,然后逐渐上升在周期加倍级联开始前达到局部峰值,过了该点,确定性急剧崩溃。一般来说,混沌动力学与较低水平的确定性呈相关关系。此外,简并性和有效信息的曲线变化和确定性曲线变化保持一致。然而,对于因果涌现曲线的变化没有什么有趣现象,它在一个相对恒定的值附近往复振荡,其中存在一个明显的例外,它在周期加倍级联开始时暴跌,如下图所示。
[[文件:恒定值.png|边框|居中|420x420像素|参数恒定值震荡|替代=参数恒定值震荡]]
+
[[文件:恒定值.png|居中|420x420像素|参数恒定值震荡|替代=参数恒定值震荡|缩略图]]
 
Pavel Chvykov和Erik Hoel等<ref>P. Chvykov, E. Hoel, Causal geometry, Entropy 23 (1) (2020) 24.</ref>也将因果涌现框架扩展到连续系统,并且假设不确定性是添加到确定性函数中的干扰,研究人员推导出连续系统有效信息的近似形式来衡量因果涌现的发生。
 
Pavel Chvykov和Erik Hoel等<ref>P. Chvykov, E. Hoel, Causal geometry, Entropy 23 (1) (2020) 24.</ref>也将因果涌现框架扩展到连续系统,并且假设不确定性是添加到确定性函数中的干扰,研究人员推导出连续系统有效信息的近似形式来衡量因果涌现的发生。
  
138

个编辑

导航菜单