更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
因果涌现
(查看源代码)
2023年7月23日 (日) 01:07的版本
添加6字节
、
2023年7月23日 (日) 01:07
→因果涌现信息分解方法
第122行:
第122行:
当<math>\mathrm{\Delta}>0 </math>且<math>\mathrm{\Gamma}=0 </math>时,宏观状态<math>V </math>发生因果涌现且发生因果解耦。
当<math>\mathrm{\Delta}>0 </math>且<math>\mathrm{\Gamma}=0 </math>时,宏观状态<math>V </math>发生因果涌现且发生因果解耦。
−
该方法避开讨论粗粒化策略。也存在很多缺点:1)该方法提出的三个指标
,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
+
该方法避开讨论粗粒化策略。但是也存在很多缺点:1)该方法提出的三个指标
,<math>\mathrm{\Psi} </math> ,<math>\mathrm{\Delta} </math> 和<math>\mathrm{\Gamma} </math>只是基于互信息计算没有考虑因果,同时该方法得到的仅仅是发生因果涌现的充分条件;2)该方法无法得到显式的宏观动力学以及粗粒化策略,然而这两项对于下游的任务往往十分重要;3)当系统具有大量冗余信息或具有许多变量时,该方法的计算复杂度仍然很高。因此,该方法不是一种最优的方法,基于数据驱动的神经信息压缩方法应运而生。
====神经信息压缩方法====
====神经信息压缩方法====
江森-JS
管理员
138
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本