更改

跳到导航 跳到搜索
删除4字节 、 2024年6月7日 (星期五)
第655行: 第655行:  
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx&\approx \int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{-\infty}^{\infty}p(x)p(y|x)\ln p(y|x)dydx\\
 
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x)p(y|x)\ln p(y|x)dydx&\approx \int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{-\infty}^{\infty}p(x)p(y|x)\ln p(y|x)dydx\\
 
&=\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{-\infty}^{\infty}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\
 
&=\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{-\infty}^{\infty}\frac{1}{L}\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\ln\left[\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(y-f(x))^2}{\sigma^2}\right)\right]dydx\\
&=\ln(\frac{L}{\sqrt{2\pi e}})
+
&=\ln(\frac{L}{\sigma\cdot\sqrt{2\pi e}})
 
\end{aligned}
 
\end{aligned}
 
</math>
 
</math>
第679行: 第679行:  
<math>
 
<math>
 
\begin{aligned}
 
\begin{aligned}
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x_0)p(y|x_0)\ln p(y)dydx_0\approx \frac{1}{2L}\int_{-\frac{L}{2}}^{\frac{L}{2}}\ln \left(\frac{f'(x_0)}{\sigma}\right)^2dx_0
+
\int_{-\frac{L}{2}}^{\frac{L}{2}}\int_{f([-\frac{L}{2},\frac{L}{2}])}p(x_0)p(y|x_0)\ln p(y)dydx_0\approx \frac{1}{2L}\int_{-\frac{L}{2}}^{\frac{L}{2}}\ln \left(f'(x_0)\right)^2dx_0
 
\end{aligned}
 
\end{aligned}
 
</math>
 
</math>
786

个编辑

导航菜单