更改

跳到导航 跳到搜索
添加13字节 、 2024年8月27日 (星期二)
第150行: 第150行:  
如果矩阵<math>P</math>满秩,但是对于任意给定的小数<math>\epsilon</math>,存在<math>r_{\epsilon}</math>,使得从<math>r_{\epsilon}+1</math>开始,所有的奇异值都小于<math>\epsilon</math>,则称系统存在着程度的'''模糊的因果涌现'''(Vague Causal Emergence),且因果涌现的数值为:<math>\Delta \Gamma_{\alpha}(\epsilon) =  \frac{\sum_{i=1}^{r} \sigma_{i}^{\alpha}}{r} -  \frac{\sum_{i=1}^{N} \sigma_{i}^{\alpha}}{N} </math>
 
如果矩阵<math>P</math>满秩,但是对于任意给定的小数<math>\epsilon</math>,存在<math>r_{\epsilon}</math>,使得从<math>r_{\epsilon}+1</math>开始,所有的奇异值都小于<math>\epsilon</math>,则称系统存在着程度的'''模糊的因果涌现'''(Vague Causal Emergence),且因果涌现的数值为:<math>\Delta \Gamma_{\alpha}(\epsilon) =  \frac{\sum_{i=1}^{r} \sigma_{i}^{\alpha}}{r} -  \frac{\sum_{i=1}^{N} \sigma_{i}^{\alpha}}{N} </math>
   −
总结来看,该定量化因果涌现的方法的好处在于,它可以不依赖于具体的粗粒化策略,因而可以更加客观地量化因果涌现。该方法的缺点是,若要计算[math]\Gamma_{\alpha}[/math],需要事先对P进行[[SVD分解]],因而计算复杂度为[math]O(N^3)[/math],因而比<math>EI</math>的计算复杂度高。而且,[math]\Gamma_{\alpha}[/math]不能显式地分解为确定度和简并度两个分量。
+
总结来看,该定量化因果涌现的方法的好处在于,它可以不依赖于具体的粗粒化策略,因而可以更加客观地量化因果涌现。该方法的缺点是,若要计算[math]\Gamma_{\alpha}[/math],需要事先对<math>P</math>进行[[SVD分解]],因而计算复杂度为[math]O(N^3)[/math],因而比<math>EI</math>的计算复杂度高。而且,[math]\Gamma_{\alpha}[/math]不能显式地分解为确定度和简并度两个分量。
    
[[文件:Gamma例子.png|居左|400x400像素|<math>EI</math>与<math>\Gamma</math>对比]]
 
[[文件:Gamma例子.png|居左|400x400像素|<math>EI</math>与<math>\Gamma</math>对比]]
2,437

个编辑

导航菜单