计算力学将任意的子集<math>R \in \mathcal{R}</math>看作是一个宏观状态。对于一组宏观状态集合<math>\mathcal{R}</math>,计算力学使用香农熵定义其统计复杂性指标<math>C_\mu</math>来衡量状态的复杂性,其中: | 计算力学将任意的子集<math>R \in \mathcal{R}</math>看作是一个宏观状态。对于一组宏观状态集合<math>\mathcal{R}</math>,计算力学使用香农熵定义其统计复杂性指标<math>C_\mu</math>来衡量状态的复杂性,其中: |